cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A254049 Odd bisection of A048673: a(n) = A048673(2*n-1).

Original entry on oeis.org

1, 3, 4, 6, 13, 7, 9, 18, 10, 12, 28, 15, 25, 63, 16, 19, 33, 39, 21, 43, 22, 24, 88, 27, 61, 48, 30, 46, 58, 31, 34, 138, 60, 36, 73, 37, 40, 123, 72, 42, 313, 45, 67, 78, 49, 94, 93, 81, 51, 163, 52, 54, 193, 55, 57, 103, 64, 102, 213, 105, 85, 108, 172, 66, 118, 69, 127, 438, 70, 75, 133, 111, 109, 303
Offset: 1

Views

Author

Antti Karttunen, Jan 24 2015

Keywords

Comments

Shift the prime factorization of odd numbers one step towards larger primes, add one and divide by two.

Examples

			For n = 8, the eighth odd number is 2*8 - 1 = 15 = 3*5 = prime(2) * prime(3). By adding one to both prime indices, we get prime(3) * prime(4) = 5*7 = 35, and (35+1)/2 = 18, thus a(8) = 18. Here prime(n) = A000040(n).
		

Crossrefs

Cf. A032766 (omitting the initial 0, the same sequence sorted into ascending order).
Also a permutation of A253888.

Formula

a(n) = A048673(2*n-1) = (1+A003961(2*n-1)) / 2 = (1+A249735(n)) / 2.
a(n) = A032766(A249746(n)).

A254051 Square array A by downward antidiagonals: A(n,k) = (3 + 3^n*(2*floor(3*k/2) - 1))/6, n,k >= 1; read as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 3, 2, 4, 8, 5, 6, 11, 23, 14, 7, 17, 32, 68, 41, 9, 20, 50, 95, 203, 122, 10, 26, 59, 149, 284, 608, 365, 12, 29, 77, 176, 446, 851, 1823, 1094, 13, 35, 86, 230, 527, 1337, 2552, 5468, 3281, 15, 38, 104, 257, 689, 1580, 4010, 7655, 16403, 9842, 16, 44, 113, 311, 770, 2066, 4739, 12029, 22964, 49208, 29525, 18, 47
Offset: 1

Views

Author

Keywords

Comments

This is transposed dispersion of (3n-1), starting from its complement A032766 as the first row of square array A(row,col). Please see the transposed array A191450 for references and background discussion about dispersions.
For any odd number x = A135765(row,col), the result after one combined Collatz step (3x+1)/2 -> x (A165355) is found in this array at A(row+1,col).

Examples

			The top left corner of the array:
   1,   3,   4,   6,   7,   9,  10,  12,   13,   15,   16,   18,   19,   21
   2,   8,  11,  17,  20,  26,  29,  35,   38,   44,   47,   53,   56,   62
   5,  23,  32,  50,  59,  77,  86, 104,  113,  131,  140,  158,  167,  185
  14,  68,  95, 149, 176, 230, 257, 311,  338,  392,  419,  473,  500,  554
  41, 203, 284, 446, 527, 689, 770, 932, 1013, 1175, 1256, 1418, 1499, 1661
...
		

Crossrefs

Inverse: A254052.
Transpose: A191450.
Row 1: A032766.
Cf. A007051, A057198, A199109, A199113 (columns 1-4).
Cf. A254046 (row index of n in this array, see also A253786), A253887 (column index).
Array A135765(n,k) = 2*A(n,k) - 1.
Other related arrays: A254055, A254101, A254102.
Related permutations: A048673, A254053, A183209, A249745, A254103, A254104.

Formula

In A(n,k)-formulas below, n is the row, and k the column index, both starting from 1:
A(n,k) = (3 + ( A000244(n) * (2*A032766(k) - 1) )) / 6. - Antti Karttunen after L. Edson Jeffery's direct formula for A191450, Jan 24 2015
A(n,k) = A048673(A254053(n,k)). [Alternative formula.]
A(n,k) = (1/2) * (1 + A003961((2^(n-1)) * A254050(k))). [The above expands to this.]
A(n,k) = (1/2) * (1 + (A000244(n-1) * A007310(k))). [Which further reduces to this, equivalent to L. Edson Jeffery's original formula above.]
A(1,k) = A032766(k) and for n > 1: A(n,k) = (3 * A254051(n-1,k)) - 1. [The definition of transposed dispersion of (3n-1).]
A(n,k) = (1+A135765(n,k))/2, or when expressed one-dimensionally, a(n) = (1+A135765(n))/2.
A(n+1,k) = A165355(A135765(n,k)).
As a composition of related permutations. All sequences interpreted as one-dimensional:
a(n) = A048673(A254053(n)). [Proved above.]
a(n) = A191450(A038722(n)). [Transpose of array A191450.]

A254053 Square array: A(row,col) = 2^(row-1) * ((2*A249745(col))-1) = A064216(A254051(row,col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 3, 2, 5, 6, 4, 7, 10, 12, 8, 11, 14, 20, 24, 16, 13, 22, 28, 40, 48, 32, 17, 26, 44, 56, 80, 96, 64, 19, 34, 52, 88, 112, 160, 192, 128, 9, 38, 68, 104, 176, 224, 320, 384, 256, 23, 18, 76, 136, 208, 352, 448, 640, 768, 512, 29, 46, 36, 152, 272, 416, 704, 896, 1280, 1536, 1024, 15, 58, 92, 72, 304, 544, 832, 1408, 1792, 2560, 3072, 2048, 31, 30
Offset: 1

Views

Author

Antti Karttunen, Jan 24 2015

Keywords

Comments

Shares with A135764 and A253551 the property that A001511(n) = k for all terms n on row k and when going downward in each column, terms grow by doubling.

Examples

			The top left corner of the array:
   1,  3,  5,   7,  11,  13,  17,  19,   9,  23,  29,  15,  31,  37,  41,  43,
   2,  6, 10,  14,  22,  26,  34,  38,  18,  46,  58,  30,  62,  74,  82,  86,
   4, 12, 20,  28,  44,  52,  68,  76,  36,  92, 116,  60, 124, 148, 164, 172,
   8, 24, 40,  56,  88, 104, 136, 152,  72, 184, 232, 120, 248, 296, 328, 344,
  16, 48, 80, 112, 176, 208, 272, 304, 144, 368, 464, 240, 496, 592, 656, 688,
...
		

Crossrefs

Inverse: A254054.
Similar or related permutations: A135764, A253551, A064216, A254051.

Formula

A(row,col) = A135764(row, A249745(col)). [Is otherwise the same array as A135764, but the column positions have been permuted by A249745.]
A(row,col) = 2^(row-1) * ((2*A249745(col))-1) = 2^(row-1) * A254050(col). [The above expands to this.]
a(n) = A064989(A135765(n)).
As a composition of other permutations:
a(n) = A064216(A254051(n)). [As an array: A(row,col) = A064216(A254051(row,col)).]

A273664 a(n) = A249746(A032766(n)).

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 10, 17, 11, 13, 26, 14, 15, 16, 18, 41, 20, 31, 21, 23, 40, 24, 25, 27, 48, 28, 30, 45, 33, 63, 54, 34, 35, 36, 37, 38, 43, 68, 70, 57, 115, 44, 46, 85, 47, 50, 74, 73, 51, 53, 87, 55, 107, 56, 58, 97, 60, 180, 61, 64, 96, 83, 65, 66, 67, 71, 114, 101, 100, 75, 110, 136, 108, 76, 77, 78, 80, 124, 81
Offset: 1

Views

Author

Antti Karttunen, Aug 06 2016

Keywords

Crossrefs

Cf. also A273669 (natural numbers not in this sequence).

Programs

  • Mathematica
    t = PositionIndex[FactorInteger[#][[1, 1]] & /@ Range[10^6]]; f[n_] := Times @@ Power[If[# == 1, 1, NextPrime@ #] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ n; Flatten@ Map[Position[Lookup[t, FactorInteger[#][[1, 1]]], #] &[f@ f[2 #]] &, Map[Times @@ Power[If[# == 1, 1, NextPrime[#, -1]] & /@ First@#, Last@#] &@ Transpose@ FactorInteger[2 # - 1] &, Floor[#/2] + # & /@ Range@ 80]] (* Michael De Vlieger, Aug 07 2016, Version 10 *)
  • Scheme
    (define (A273664 n) (A249746 (A032766 n)))

Formula

a(n) = A249746(A032766(n)).
a(n) = A249824(A254050(n)).
a(n) = A249746(A254049(A249745(n))).
Showing 1-4 of 4 results.