cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A254054 Permutation of natural numbers: a(n) = A254052(A048673(n)).

Original entry on oeis.org

1, 3, 2, 6, 4, 5, 7, 10, 37, 8, 11, 9, 16, 12, 67, 15, 22, 47, 29, 13, 172, 17, 46, 14, 137, 23, 862, 18, 56, 80, 79, 21, 232, 30, 326, 58, 92, 38, 407, 19, 106, 192, 121, 24, 1712, 57, 154, 20, 821, 155, 497, 31, 191, 905, 466, 25, 742, 68, 211, 94, 254, 93, 4187, 28, 781, 255, 277, 39, 1177, 353, 301, 70, 352, 107, 3322, 48, 1129, 437, 379, 26
Offset: 1

Views

Author

Antti Karttunen, Jan 24 2015

Keywords

Comments

This is an inverse permutation to A254053, see comments there.

Crossrefs

Inverse: A254053.
Similar or related permutations: A048673, A254052.

Programs

Formula

a(n) = A254052(A048673(n)).

A254051 Square array A by downward antidiagonals: A(n,k) = (3 + 3^n*(2*floor(3*k/2) - 1))/6, n,k >= 1; read as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 3, 2, 4, 8, 5, 6, 11, 23, 14, 7, 17, 32, 68, 41, 9, 20, 50, 95, 203, 122, 10, 26, 59, 149, 284, 608, 365, 12, 29, 77, 176, 446, 851, 1823, 1094, 13, 35, 86, 230, 527, 1337, 2552, 5468, 3281, 15, 38, 104, 257, 689, 1580, 4010, 7655, 16403, 9842, 16, 44, 113, 311, 770, 2066, 4739, 12029, 22964, 49208, 29525, 18, 47
Offset: 1

Views

Author

Keywords

Comments

This is transposed dispersion of (3n-1), starting from its complement A032766 as the first row of square array A(row,col). Please see the transposed array A191450 for references and background discussion about dispersions.
For any odd number x = A135765(row,col), the result after one combined Collatz step (3x+1)/2 -> x (A165355) is found in this array at A(row+1,col).

Examples

			The top left corner of the array:
   1,   3,   4,   6,   7,   9,  10,  12,   13,   15,   16,   18,   19,   21
   2,   8,  11,  17,  20,  26,  29,  35,   38,   44,   47,   53,   56,   62
   5,  23,  32,  50,  59,  77,  86, 104,  113,  131,  140,  158,  167,  185
  14,  68,  95, 149, 176, 230, 257, 311,  338,  392,  419,  473,  500,  554
  41, 203, 284, 446, 527, 689, 770, 932, 1013, 1175, 1256, 1418, 1499, 1661
...
		

Crossrefs

Inverse: A254052.
Transpose: A191450.
Row 1: A032766.
Cf. A007051, A057198, A199109, A199113 (columns 1-4).
Cf. A254046 (row index of n in this array, see also A253786), A253887 (column index).
Array A135765(n,k) = 2*A(n,k) - 1.
Other related arrays: A254055, A254101, A254102.
Related permutations: A048673, A254053, A183209, A249745, A254103, A254104.

Formula

In A(n,k)-formulas below, n is the row, and k the column index, both starting from 1:
A(n,k) = (3 + ( A000244(n) * (2*A032766(k) - 1) )) / 6. - Antti Karttunen after L. Edson Jeffery's direct formula for A191450, Jan 24 2015
A(n,k) = A048673(A254053(n,k)). [Alternative formula.]
A(n,k) = (1/2) * (1 + A003961((2^(n-1)) * A254050(k))). [The above expands to this.]
A(n,k) = (1/2) * (1 + (A000244(n-1) * A007310(k))). [Which further reduces to this, equivalent to L. Edson Jeffery's original formula above.]
A(1,k) = A032766(k) and for n > 1: A(n,k) = (3 * A254051(n-1,k)) - 1. [The definition of transposed dispersion of (3n-1).]
A(n,k) = (1+A135765(n,k))/2, or when expressed one-dimensionally, a(n) = (1+A135765(n))/2.
A(n+1,k) = A165355(A135765(n,k)).
As a composition of related permutations. All sequences interpreted as one-dimensional:
a(n) = A048673(A254053(n)). [Proved above.]
a(n) = A191450(A038722(n)). [Transpose of array A191450.]

A253887 Row index of n in A191450: a(3n) = 2n, a(3n+1) = 2n+1, a(3n+2) = a(n+1).

Original entry on oeis.org

1, 1, 2, 3, 1, 4, 5, 2, 6, 7, 3, 8, 9, 1, 10, 11, 4, 12, 13, 5, 14, 15, 2, 16, 17, 6, 18, 19, 7, 20, 21, 3, 22, 23, 8, 24, 25, 9, 26, 27, 1, 28, 29, 10, 30, 31, 11, 32, 33, 4, 34, 35, 12, 36, 37, 13, 38, 39, 5, 40, 41, 14, 42, 43, 15, 44, 45, 2, 46, 47, 16, 48, 49, 17, 50, 51, 6, 52, 53, 18, 54, 55, 19, 56, 57, 7
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2015

Keywords

Comments

a(n) gives the row index of n in square array A191450, or equally, the column index of n in A254051.

Crossrefs

Odd bisection of A126760.
Cf. A254046 (the corresponding column index).

Programs

  • Python
    def a(n):
        if n%3==0: return 2*n//3
        elif n%3==1: return 2*(n - 1)//3 + 1
        else: return a((n - 2)//3 + 1)
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 06 2017

Formula

a(3n) = 2n, a(3n+1) = 2n+1, a(3n+2) = a(n+1).
a(n) = A126760(2n-1).
a(n) = A249746(A003602(A064216(n))). - Antti Karttunen, Feb 04 2015

A254046 Column index of n in A191450: a(3n) = 1, a(3n+1) = 1, a(3n+2) = 1 + a(n+1).

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 5, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 4, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 2, 1, 1, 2, 1, 1, 6, 1, 1, 2, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 24 2015

Keywords

Comments

Equally, the row index of n in A254051.
a(n) is the 3-adic valuation of A087289(n-1). - Fred Daniel Kline, Jan 11 2017

Crossrefs

One more than A253786.
Cf. A253887 (the corresponding row index).
Odd bisection of A051064.

Programs

  • Mathematica
    With[{nmax=200},IntegerExponent[6Range[nmax]-3,3]] (* Paolo Xausa, Nov 10 2023 *)

Formula

a(3n) = 1, a(3n+1) = 1, a(3n+2) = 1 + a(n+1).
a(n) = A253786(n) + 1.
a(n) = A253786(3n-1). - Cyril Damamme, Aug 04 2015
a(n) = A051064(2n-1), i.e., the 3-adic valuation of 6n-3. - Cyril Damamme, Aug 04 2015
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3/2. - Amiram Eldar, Nov 16 2023

A254047 Inverse permutation to A191450.

Original entry on oeis.org

1, 2, 3, 6, 4, 10, 15, 5, 21, 28, 9, 36, 45, 7, 55, 66, 14, 78, 91, 20, 105, 120, 8, 136, 153, 27, 171, 190, 35, 210, 231, 13, 253, 276, 44, 300, 325, 54, 351, 378, 11, 406, 435, 65, 465, 496, 77, 528, 561, 19, 595, 630, 90, 666, 703, 104, 741, 780, 26, 820, 861, 119, 903, 946, 135, 990, 1035, 12, 1081, 1128, 152, 1176, 1225, 170, 1275, 1326, 34
Offset: 1

Views

Author

Antti Karttunen, Jan 24 2015

Keywords

Crossrefs

Programs

  • Scheme
    (define (A254047 n) (let ((x (A253887 n)) (y (A254046 n))) (* (/ 1 2) (- (expt (+ x y) 2) x y y y -2))))
Showing 1-5 of 5 results.