cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A254136 Indices of pentagonal numbers (A000326) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 73, 889, 84049, 1025713, 96992281, 1183671721, 111929008033, 1365956140129, 129165978277609, 1576312202036953, 149057427003352561, 1819062915194503441, 172012141595890577593, 2099197027822254933769, 198501862344230723189569, 2422471551043966999065793
Offset: 1

Views

Author

Colin Barker, Jan 26 2015

Keywords

Comments

Also positive integers x in the solutions to 3*x^2 - 6*y^2 - x + 6*y - 2 = 0, the corresponding values of y being A254137.

Examples

			73 is in the sequence because the 73rd pentagonal number is 7957, which is also the 52nd centered hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1154,-1154,-1,1},{1,73,889,84049,1025713},20] (* Harvey P. Dale, Mar 24 2024 *)
  • PARI
    Vec(-x*(x^4+72*x^3-338*x^2+72*x+1)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+1154*a(n-2)-1154*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+72*x^3-338*x^2+72*x+1) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).

A254138 Pentagonal numbers (A000326) which are also centered hexagonal numbers (A003215).

Original entry on oeis.org

1, 7957, 1185037, 10596309577, 1578130224697, 14111253811878301, 2101618114050816901, 18792154258821103289617, 2798754265133491448134897, 25025774916617575492416996517, 3727140237435880812247465267837, 33327174817289665775049786996211801
Offset: 1

Views

Author

Colin Barker, Jan 26 2015

Keywords

Examples

			7957 is in the sequence because it is the 73rd pentagonal number and the 52nd centered hexagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,1331714,-1331714,-1,1},{1,7957,1185037,10596309577,1578130224697},20] (* Harvey P. Dale, Sep 26 2023 *)
  • PARI
    Vec(-x*(x^4+7956*x^3-154634*x^2+7956*x+1)/((x-1)*(x^2-1154*x+1)*(x^2+1154*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+1331714*a(n-2)-1331714*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+7956*x^3-154634*x^2+7956*x+1) / ((x-1)*(x^2-1154*x+1)*(x^2+1154*x+1)).
Showing 1-2 of 2 results.