cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254149 Decimal expansion of the average reciprocal length of a line segment picked at random in a unit 4-cube.

Original entry on oeis.org

1, 4, 8, 1, 4, 3, 2, 6, 3, 6, 5, 2, 1, 0, 6, 4, 7, 4, 9, 7, 4, 8, 7, 6, 9, 1, 4, 0, 7, 2, 7, 6, 5, 8, 3, 0, 2, 5, 7, 0, 9, 5, 2, 6, 3, 4, 1, 5, 4, 8, 6, 1, 0, 4, 8, 8, 7, 7, 5, 3, 7, 8, 9, 6, 7, 1, 6, 8, 2, 3, 9, 9, 1, 0, 3, 5, 0, 7, 1, 2, 8, 8, 9, 1, 6, 3, 6, 9, 5, 7, 7, 9, 8, 6, 9, 0, 5, 5, 2, 9, 1, 8, 5
Offset: 1

Views

Author

Jean-François Alcover, Jan 26 2015

Keywords

Examples

			1.481432636521064749748769140727658302570952634154861...
		

Crossrefs

Programs

  • Mathematica
    Ti2[x_] := (I/2)*(PolyLog[2, -I*x] - PolyLog[2, I*x]); Delta4[-1]=-152/315 - 8*Pi/15 - 16/5*Log[2] + 2/5*Log[3] + 68/105*Sqrt[2] - 16/35*Sqrt[3] + 4/5*Log[1 + Sqrt[2]] + 32/5*Log[1 + Sqrt[3]] - 8/3*Catalan + 8*Ti2[3 - 2 Sqrt[2]] - 8/5*Sqrt[2]*ArcTan[Sqrt[2]/4] // Re; RealDigits[Delta4[-1], 10, 103] // First
  • Python
    from mpmath import *
    mp.dps=104
    x=3 - 2*sqrt(2)
    Ti2x=(j/2)*(polylog(2, -j*x) - polylog(2, j*x))
    C=-152/315 - 8*pi/15 - 16/5*log(2) + 2/5*log(3) + 68/105*sqrt(2) - 16/35*sqrt(3) + 4/5*log(1 + sqrt(2)) + 32/5*log(1 + sqrt(3)) - 8/3*catalan + 8*Ti2x - 8/5*sqrt(2)*atan(sqrt(2)/4)
    print([int(n) for n in list(str(C.real).replace('.','')[:-1])]) # Indranil Ghosh, Jul 03 2017

Formula

Delta_4(-1) = Integral over a unit 4-cube of 1/sqrt((r1-q1)^2+(r2-q2)^2+(r3-q3)^2+(r4-q4)^2) dr dq.
Delta_4(-1) = -152/315 - 8*Pi/15 - 16/5*log(2) + 2/5*log(3) + 68/105*sqrt(2) - 16/35*sqrt(3) + 4/5*log(1 + sqrt(2)) + 32/5*log(1 + sqrt(3)) - 8/3*Catalan + 8*Ti2(3 - 2*sqrt(2)) - 8/5*sqrt(2)*arctan(sqrt(2)/4), where Ti2 is Lewin's arctan integral.