cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254168 T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal median nondecreasing horizontally, vertically and ne-to-sw antidiagonally.

Original entry on oeis.org

512, 3036, 3036, 16240, 23660, 16240, 76832, 164408, 164684, 76832, 348032, 1078032, 1553720, 1014816, 348032, 1511152, 6831024, 15016048, 13514192, 6159516, 1511152, 6440848, 41678024, 139009432, 191190272, 119471400, 36538548
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Table starts
.......512........3036.........16240...........76832.............348032
......3036.......23660........164408.........1078032............6831024
.....16240......164684.......1553720........15016048..........139009432
.....76832.....1014816......13514192.......191190272.........2589374656
....348032.....6159516.....119471400......2437141776........47722312832
...1511152....36538548....1054310240.....31143715804.......886761490936
...6440848...217539476....9378850720....399587109728.....16524431408400
..27128324..1297596948...83642043104...5135066242396....307997125181376
.113712184..7773465716..747838723984..66055387860800...5746900683155904
.475820928.46667868056.6692350328688.850097997207468.107280164731745488

Examples

			Some solutions for n=2 k=4
..0..1..0..0..1..0....0..0..1..0..1..0....0..1..1..1..1..0....0..1..0..1..1..1
..1..0..1..1..1..0....1..0..0..1..1..0....1..0..0..1..1..0....1..0..1..0..1..0
..0..1..0..0..0..1....0..1..0..0..0..0....1..1..0..1..1..0....1..1..0..0..0..0
..1..0..0..1..1..0....1..1..0..1..1..0....1..1..1..1..1..1....1..1..1..0..1..0
		

Formula

Empirical for column k:
k=1: [linear recurrence of order 32]
k=2: [order 45] for n>53
k=3: [order 66] for n>71
Empirical for row n:
n=1: [same linear recurrence of order 32]
n=2: [order 47] for n>61
n=3: [order 73] for n>90