cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A254211 Number of length n 1..(1+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 456, 2178, 3376, 2222, 720, 158, 24, 0, 0, 0, 0, 0, 10, 122, 204, 116, 26, 2, 10, 72, 84, 25, 6, 4, 0, 0, 0, 0, 0
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

These are vectors [u_1 ... u_n] such that
(i) u_i = 1,2 or 3,
(ii) u_i != u_{i+1},
(iii) Sum_{i=1..k} u_i != prime for k=1..n,
(iv) Sum_{i=k..n} u_i != prime for k=1..n.
Conjecture: There are infinitely many n > 0 with a(n) > 0. - Alois P. Heinz, Jan 27 2015

Examples

			All solutions for n=5:
..1
..3
..2
..3
..1
		

Crossrefs

Column k=1 of A254218.

A254212 Number of length n 1..(2+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.

Original entry on oeis.org

2, 0, 1, 2, 2, 2, 2, 2, 5, 4, 5, 8, 31, 64, 83, 66, 60, 104, 158, 240, 846, 2990, 6296, 8440, 10213, 14034, 16843, 15538, 20339, 57766, 202098, 751354, 2575608, 6730882, 12332861, 15945860, 15602393, 13432584, 12250132, 12687426, 23661609, 144529800
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Examples

			All solutions for n=4:
..4....1
..2....3
..3....2
..1....4
		

Crossrefs

Column k=2 of A254218.

A254213 Number of length n 1..(3+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.

Original entry on oeis.org

2, 0, 3, 4, 8, 6, 15, 18, 45, 118, 553, 1706, 2845, 2970, 4470, 9426, 30908, 115084, 350693, 804152, 1724453, 3598260, 6467166, 12292306, 36973565, 137754308, 493838258, 1570992174, 4107583256, 8556975584, 14790344176, 23129972292
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Examples

			All solutions for n=4:
..1....1....4....1
..3....5....2....3
..2....3....3....5
..4....1....1....1
		

Crossrefs

Column k=3 of A254218.

A254219 Number of length 2 1..(n+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.

Original entry on oeis.org

0, 0, 0, 2, 2, 8, 12, 18, 18, 28, 28, 40, 50, 64, 64, 82, 82, 102, 118, 136, 136, 164, 182, 210, 232, 260, 260, 296, 296, 328, 356, 392, 424, 466, 466, 506, 542, 586, 586, 638, 638, 686, 728, 778, 778, 838, 884, 944, 994, 1050, 1050, 1118, 1168, 1236, 1290, 1352, 1352
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Examples

			All solutions for n=4:
..6....4
..4....6
		

Crossrefs

Row n=2 of A254218.

A254220 Number of length 3 1..(n+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.

Original entry on oeis.org

0, 1, 3, 11, 12, 32, 48, 86, 98, 172, 183, 295, 383, 525, 559, 793, 829, 1110, 1324, 1646, 1709, 2199, 2531, 3056, 3469, 4088, 4240, 5109, 5232, 6062, 6762, 7716, 8528, 9788, 9981, 11227, 12290, 13721, 14030, 15841, 16146, 17912, 19384, 21355, 21760, 24188
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 3 of A254218

Examples

			All solutions for n=4
..1....6....4....4....1....4....6....6....4....6....6
..5....3....6....2....3....2....2....4....5....3....2
..4....6....4....6....6....4....4....6....1....1....6
		

A254221 Number of length 4 1..(n+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.

Original entry on oeis.org

0, 2, 4, 22, 24, 96, 168, 388, 490, 1024, 1168, 2138, 3000, 4554, 5084, 7872, 8570, 12358, 15532, 20538, 22120, 30338, 35972, 45928, 54068, 66830, 71348, 90658, 95374, 115162, 132074, 156726, 177542, 212556, 221796, 258292, 289706, 334554, 349466
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 4 of A254218

Examples

			Some solutions for n=4
..6....6....1....4....4....4....4....6....1....6....1....1....1....4....6....4
..4....2....5....6....2....6....6....4....3....4....5....5....3....2....3....2
..5....6....3....2....4....2....4....2....2....6....3....4....5....3....5....6
..1....4....1....4....6....6....6....4....4....4....6....6....1....1....4....4
		

A254222 Number of length 5 1..(n+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.

Original entry on oeis.org

1, 2, 8, 56, 70, 373, 766, 2056, 2803, 6705, 8187, 16545, 24733, 41212, 48532, 81412, 92845, 144041, 189040, 265403, 297177, 431956, 529070, 713448, 869044, 1126558, 1239341, 1658996, 1795709, 2254484, 2659181, 3286796, 3820778, 4762245, 5091242
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 5 of A254218

Examples

			Some solutions for n=4
..6....6....4....1....6....6....1....6....1....4....4....6....4....1....6....1
..2....4....6....5....4....2....5....2....3....2....2....3....5....5....2....3
..4....5....5....3....6....4....6....4....4....6....3....1....6....4....6....2
..2....3....6....5....5....3....3....6....2....4....5....2....3....2....2....3
..4....6....4....1....1....1....1....4....6....6....4....6....6....4....6....1
		

A254223 Number of length 6 1..(n+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.

Original entry on oeis.org

0, 2, 6, 136, 192, 1472, 3720, 11182, 16698, 44652, 58174, 129560, 207946, 379126, 471170, 858104, 1025788, 1709908, 2349342, 3507974, 4085852, 6291688, 7972036, 11313026, 14262670, 19396782, 22025082, 31062140, 34653076, 45272262, 55014664
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 6 of A254218

Examples

			Some solutions for n=4
..4....1....4....1....6....6....6....6....6....1....1....4....4....6....6....4
..5....3....6....5....2....4....3....4....2....5....3....6....2....2....3....2
..1....6....5....6....6....6....5....6....4....4....4....4....6....6....1....3
..6....2....1....4....4....5....4....4....2....2....2....6....4....1....4....6
..2....6....2....2....6....3....2....2....4....6....5....5....6....3....6....5
..6....4....6....4....4....6....4....4....6....4....1....1....4....6....4....4
		

A254224 Number of length 7 1..(n+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.

Original entry on oeis.org

0, 2, 15, 383, 633, 6490, 18214, 60168, 97089, 296955, 420163, 1046085, 1799943, 3545675, 4664339, 9251052, 11630683, 20703803, 29730723, 47075466, 56991009, 93151404, 122440340, 182865306, 239287220, 341720757, 401640735, 596658745
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Row 7 of A254218

Examples

			Some solutions for n=4
..4....6....6....4....1....6....4....4....6....6....6....1....6....1....4....4
..5....2....3....5....3....2....6....2....2....4....2....3....4....3....6....6
..3....4....5....3....4....4....4....4....6....2....6....6....5....2....2....4
..6....2....6....4....2....2....2....2....4....3....4....4....3....4....4....2
..4....6....4....5....6....1....6....4....6....6....6....2....4....2....6....4
..2....5....2....3....2....3....3....5....2....3....4....6....2....4....4....2
..6....1....4....6....4....6....1....1....4....6....6....4....6....6....6....4
		

A254214 Number of length n 1..(4+2) arrays with no leading or trailing partial sum equal to a prime and no consecutive values equal.

Original entry on oeis.org

3, 2, 11, 22, 56, 136, 383, 1070, 3897, 13372, 36290, 91998, 263764, 898044, 3423582, 12431962, 40311611, 119109004, 342803738, 1087179458, 4009074487, 15810174070, 60200487014, 208013211868, 641452364953
Offset: 1

Views

Author

R. H. Hardin, Jan 26 2015

Keywords

Comments

Column 4 of A254218

Examples

			Some solutions for n=4
..1....1....1....4....4....4....6....4....4....6....1....4....1....6....1....6
..5....5....3....2....5....6....3....2....6....4....5....6....5....4....3....4
..3....6....2....6....3....5....5....3....2....2....3....2....4....6....5....5
..6....4....4....4....6....1....4....1....6....6....1....4....6....4....1....1
		
Showing 1-10 of 13 results. Next