cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254296 The number of partitions of n having the minimum number of summands such that all integers from 1 to n can be represented as the sum of the summands times one of {-1, 0, 1}.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 1, 1, 1, 10, 11, 12, 11, 12, 12, 11, 11, 12, 9, 9, 9, 7, 7, 7, 5, 5, 5, 3, 3, 3, 2, 2, 2, 1, 1, 1, 131, 136, 140, 133, 137, 140, 133, 136, 138, 129, 131, 134, 125, 126, 128, 117, 119, 120, 109, 110, 111, 101, 102, 102, 92, 92, 93, 81, 81, 81, 72, 72, 72, 63, 63, 63, 54, 54, 54, 47, 47, 47, 40, 40, 40, 33, 33, 33
Offset: 1

Views

Author

Md. Towhidul Islam, Jan 27 2015

Keywords

Comments

Define a feasible partition of an n-kilogram stone as an ordered partition of minimum possible m parts W_1 <= W_2 <= ... <= W_m broken from the stone such that all integral weights from 1 to n can be weighed in one weighing using the parts/weights on a two pan balance. The minimum m for any n is m=ceiling(log_3(2n)). This sequence gives the number of feasible partitions of n.
From Robert G. Wilson v, Feb 04 2015: (Start)
Records: 1, 2, 3, 10, 11, 12, 131, 136, 140, 3887, 3921, 3950, 262555, 263112, 263707, 42240104, 42262878, 42285095, 16821037273, 16823225535, 16825391023, ..., .
Possible values: 1, 2, 3, 5, 7, 9, 10, 11, 12, 15, 18, 23, 28, 33, 40, 47, 54, 63, 72, 81, 92, 93, 101, 102, 105, ..., .
First occurrence on k, or 0 if not present: 1, 5, 7, 0 29, 0, 26, 0, 23, 14, 15, 16, 0, 0, 98, 0, 0, 95, 0, 0, 0, 0, 92, ..., .
1 occurs at: 1, 2, 3, 4, 11, 12, 13, 38, 39, 40, 119, 120, 121, 362, 363, 364, 1091, 1092, 1093, 3278, 3279, 3280, 9839, 9840, 9841, ..., .
2 occurs at: 5, 6, 8, 9, 10, 35, 36, 37, 116, 117, 118, 359, 360, 361, 1088, 1089, 1090, 3275, 3276, 3277, 9836, 9837, 9838, ..., .
3 occurs at: 7, 32, 33, 34, 113, 114, 115, 356, 357, 358, 1085, 1086, 1087, 3272, 3273, 3274, 9833, 9834, 9835, ..., .
5 occurs at: 29, 30, 31, 110, 111, 112, 353, 354, 355, 1082, 1083, 1084, 3269, 3270, 3271, 9830, 9831, 9832, ..., . (End)

Examples

			For n=3, minimum number of weights m is 2. The only "feasible" set of weights is [1,2]. So, a(3)=1.
For n=7, m is 3. The "feasible" sets of weights are [1,1,5], [1,2,4], [1,3,3]. So, a(7)=3.
For n=19, m is 4. The "feasible" sets of weights are [1,1,4,13], [1,1,5,12], [1,2,3,13], [1,2,4,12], [1,2,5,11], [1,2,6,10], [1,2,7,9], [1,3,3,12], [1,3,4,11], [1,3,5,10], [1,3,6,9], [1,3,7,8]. There are no other "feasible" sets. So, a(19)=12.
		

Crossrefs

When we calculate a(n) for (3^(m-1)+1)/2+3^(m-2)+1 <= n <= (3^m-1)/2 starting from n=(3^m-1)/2 backwards, we get the sequence A062051 which is also the triplication of the terms of sequence A005704.

Programs

  • Mathematica
    okQ[v_] := Module[{s=0}, For[i=1, i <= Length[v], i++, If[v[[i]] > 2*s+1, Return[ False], s += v[[i]] ] ]; Return[True]]; a[n_] := With[{k = Ceiling[Log[3, 2n]]}, Select[Reverse /@ IntegerPartitions[n, {k}], okQ] // Length]; Table[a[n], {n, 1, 88}] (* Jean-François Alcover, Feb 03 2015, after Charles R Greathouse IV *)
  • PARI
    ok(v)=my(s);for(i=1,#v,if(v[i]>2*s+1,return(0),s+=v[i]));1
    a(n)=my(k=ceil(log(2*n)/log(3))); #select(ok, partitions(n,,k)) \\ Charles R Greathouse IV, Feb 02 2015

Formula

Let us suppose, a(0)=1 and for (3^(m-1)+1)/2<=n<=(3^m-1)/2, m=ceiling(log_3(2n)).
Then for (3^(m-1)+1)/2<=n<=(3^(m-1)+1)/2+(3^(m-2)),a(n)=Sum{s=ceiling((n-1)/3..floor((2n+3^(m-2)-1)/4)}a(s)-Sum{d=ceiling((3n+2)/5)..(3^(m-1)-1)/2}Sum{p=ceiling((d-1)/3..2d-n-1}a(p)
and for (3^(m-1)+1)/2+3^(m-2)+1<=n<=(3^m-1)/2, a(n)=Sum_{s=ceiling((n-1)/3)..(3^(m-1)-1)/2}a(s).