A254436 A component sequence of A254296.
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 2, 1, 2, 1, 4, 3, 6, 3, 6, 5, 8, 7, 10, 7, 12, 9, 14, 11, 16, 14, 19, 17, 22, 20, 28, 23, 31, 26, 34, 32, 40, 35, 43, 38, 51, 46, 59, 51, 64, 61, 74, 71, 84, 76, 94, 86, 104, 96, 114, 108, 126, 120, 138, 132, 157, 146, 171
Offset: 1
Keywords
Links
- Md. Towhidul Islam, Table of n, a(n) for n = 1..6561
- Md Towhidul Islam & Md Shahidul Islam, Number of Partitions of an n-kilogram Stone into Minimum Number of Weights to Weigh All Integral Weights from 1 to n kg(s) on a Two-pan Balance, arXiv:1502.07730 [math.CO], 2015.
Crossrefs
Formula
If m=ceiling(log_3(2k)), define n=(3^(m-1)+1)/2+(3^(m-2))-k for k in the range (3^(m-1)+1)/2<=k<=(3^(m-1)-1)/2+(3^(m-2)).
Then a(n)=Sum_{d=ceiling((3k+2)/5)..(3^(m-1)-1)/2} Sum_{p=ceiling((d-1)/3..2d-k-1} A254296(p).
Comments