A254328 Numbers k such that all x^2 mod k are squares (including 0 and 1).
1, 2, 3, 4, 5, 8, 12, 16
Offset: 1
Examples
Terms k <= 16 and the squares mod k: 1: [0] 2: [0, 1] 3: [0, 1, 1] 4: [0, 1, 0, 1] 5: [0, 1, 4, 4, 1] 8: [0, 1, 4, 1, 0, 1, 4, 1] 12: [0, 1, 4, 9, 4, 1, 0, 1, 4, 9, 4, 1] 16: [0, 1, 4, 9, 0, 9, 4, 1, 0, 1, 4, 9, 0, 9, 4, 1] k = 10 is not a term: in the list of squares mod 10, [0, 1, 4, 9, 6, 5, 6, 9, 4, 1], the numbers 5 and 6 are not squares.
Links
- Dan Ismailescu and Yunkyu James Lee, Polynomially growing integer sequences all whose terms are composite, arXiv:2501.04851 [math.NT], 2025. (See the proof of Theorem 2.1.)
Programs
-
Mathematica
f[n_] := Mod[Range[n]^2, n]; Select[Range@ 10000, AllTrue[f@ #, IntegerQ[Sqrt[#]] &] &] (* AllTrue function introduced in version 10; Michael De Vlieger, Jan 29 2015 *)
-
PARI
isok(n)=for(k=2,n-1,if(!issquare(lift(Mod(k,n)^2)),return(0)));return(1); for(n=1,10^9,if(isok(n),print1(n,", ")));
-
PARI
is(n)=for(k=sqrtint(n)+1,n\2, if(!issquare(k^2%n), return(0))); 1 for(m=10,10^6,for(k=0,sqrtint(2*m),if(is(t=m^2-k^2),print(t)))) \\ Charles R Greathouse IV, Jan 29 2015
Extensions
Keywords fini and full added by Jianing Song, Feb 14 2019
Comments