A254334 Powers of 3 in base 60, concatenating the decimal values of the sexagesimal digits.
1, 3, 9, 27, 121, 403, 1209, 3627, 14921, 52803, 162409, 491227, 2273721, 7225203, 22083609, 106254827, 319172521, 957521603, 2953364809, 12940502427, 42902311321, 132707334003, 402122410009, 2010408030027, 6031224090121, 18093712270403, 54285137211209
Offset: 0
Examples
a(6) = 1209, since 3^6 = 729 = 12 * 60^1 + 9, thus 12:09 in clock-like notation, which becomes 1209 when restricted to numeric characters.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1200
Crossrefs
Programs
-
Mathematica
f[n_] := FromDigits@ StringJoin[If[# < 10, StringJoin["0", ToString[#]], ToString[#]] & /@ IntegerDigits[3^n, 60]]; Table[f@ i, {i, 0, 26}] (* Michael De Vlieger, Jan 28 2015 *)
-
PARI
a(n) = subst(Pol(digits(3^n, 60)), x, 100); \\ Michel Marcus, Feb 22 2015
-
Python
def digits(n,b=10): # list of digits of n in base b x, y = n, [] while x >= b: x, r = divmod(x,b) y.append(r) y.append(x) return list(reversed(y)) A254334_list = [int(''.join([format(x,'02d') for x in digits(3**i, 60)])) for i in range(10**2)] # Chai Wah Wu, Mar 14 2015
Comments