cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254352 a(n) is the least composite x such that sigma(x) divides (x-1)^n but not (x-1)^(n-1), for n >= 2.

Original entry on oeis.org

385, 21, 93, 235, 2899, 903, 1771, 3619, 651, 11935, 2667, 48895, 11811, 27559, 415555, 848995, 172011, 3153535, 761763, 1777447, 2752491, 7281799, 11010027, 28442407, 48758691, 113770279, 199753347, 466091143, 677207307, 2064117919, 3220807683, 7515217927
Offset: 2

Views

Author

Paolo P. Lava, Jan 30 2015

Keywords

Examples

			sigma(385) = 576; (385 - 1)^2 = 21743271936 and 21743271936 / 576 = 37748736.
sigma(21) = 32; (21 - 1)^3 = 8000 and 8000 / 32 = 250.
sigma(93) = 128; (93 - 1)^4 = 71639296 and 71639296 / 128 = 559682.
		

Crossrefs

Programs

  • Maple
    with(numtheory):P:=proc(q) local a,j,k,n; for k from 2 to q do
    for n from 1 to q do if not isprime(n) then
    if type((n-1)^k/sigma(n),integer) then
    if not type((n-1)^(k-1)/sigma(n),integer) then lprint(k,n);
    break; fi; fi; fi; od; od;end: P(10^9);
  • Mathematica
    a[n_] := Module[{k=4, s=7}, While[PrimeQ[k] || !(PowerMod[k-1, n, s] == 0 && PowerMod[k-1, n-1, s] > 0), k++; s=DivisorSigma[1, k]]; k]; Array[a, 11, 2] (* Amiram Eldar, Apr 08 2019 *)
  • PARI
    a(n) = {x = 4; sx = sigma(x); while(! (((x-1)^(n-1) % sx) && !((x-1)^n % sx)), x++; while (isprime(x), x++); sx = sigma(x)); x;} \\ Michel Marcus, Jan 30 2015
    
  • PARI
    isok(x, n) = my(sx=sigma(x)); (((x-1)^(n-1) % sx) && !((x-1)^n % sx));
    a(n) = forcomposite(x=4, , if (isok(x, n), return(x))); \\ Michel Marcus, Apr 08 2019

Extensions

a(22)-a(33) from Amiram Eldar, Apr 08 2019