A254375 Digital roots of centered heptagonal numbers (A069099).
1, 8, 4, 7, 8, 7, 4, 8, 1, 1, 8, 4, 7, 8, 7, 4, 8, 1, 1, 8, 4, 7, 8, 7, 4, 8, 1, 1, 8, 4, 7, 8, 7, 4, 8, 1, 1, 8, 4, 7, 8, 7, 4, 8, 1, 1, 8, 4, 7, 8, 7, 4, 8, 1, 1, 8, 4, 7, 8, 7, 4, 8, 1, 1, 8, 4, 7, 8, 7, 4, 8, 1, 1, 8, 4, 7, 8, 7, 4, 8, 1, 1, 8, 4, 7, 8
Offset: 1
Examples
a(3) = 4 because the 3rd centered heptagonal number is 22, the digital root of which is 4.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 1).
Programs
-
Mathematica
FixedPoint[Plus @@ IntegerDigits[#] &, #] & /@ FoldList[#1 + #2 &, 1, 7 Range@ 80] (* Michael De Vlieger, Feb 01 2015, after Robert G. Wilson v at A069099 *) LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 8, 4, 7, 8, 7, 4, 8, 1},86] (* Ray Chandler, Aug 26 2015 *)
-
PARI
m=9; vector(200, n, (m*n*(n-1)/2)%9+1)
Comments