cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A254400 a(n) = floor(b(n)), where b(n) = b(n-1)^(3/2), b(1) = 2.

Original entry on oeis.org

2, 2, 4, 10, 33, 193, 2684, 139116, 51888311, 373769884171, 228510656987187971, 109234465617278065859643766, 1141667222716533804555279991265973169394, 38575298818045633410275497202805726438253675072452563405216
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 30 2015

Keywords

Crossrefs

Programs

  • Mathematica
    Floor[RecurrenceTable[{a[1]==2,a[n]==a[n-1]^(3/2)},a,{n,1,15}]]
    Table[Floor[2^((3/2)^(n-1))], {n, 1, 15}]

Formula

a(n) = floor(2^((3/2)^(n-1))).

A254406 a(n) = floor(a(n-1)^(5/2)), a(1) = 2.

Original entry on oeis.org

2, 5, 55, 22434, 75381849525, 1560152215306022835807766096, 96142947030750035305397690793504947854390697291777107758182668001398
Offset: 1

Views

Author

Vaclav Kotesovec, Jan 30 2015

Keywords

Comments

The next term -- a(8) -- has 170 digits. - Harvey P. Dale, Apr 18 2022

Crossrefs

Cf. A254405.

Programs

  • Mathematica
    RecurrenceTable[{a[1]==2,a[n]==Floor[a[n-1]^(5/2)]},a,{n,1,10}]
    NestList[Floor[(Sqrt[#])^5]&,2,10] (* Harvey P. Dale, Apr 18 2022 *)

Formula

a(n) ~ c^((5/2)^n), where c = 1.292359119971021796628915278748164958162881226395259818195999161... .
Showing 1-2 of 2 results.