A254460 a(n) is the number of predecessors of the all-ones state of the binary cellular automaton on the n X n grid graph with edges joining diagonal neighbors as well as vertical and horizontal neighbors, whose local rule is f(i,j) = sum of the state at vertex (i,j) and the states at all of its neighbors mod 2.
1, 8, 1, 1, 512, 1, 1, 32768, 1, 1, 2097152, 1, 1, 134217728, 1, 1, 8589934592, 1, 1, 549755813888, 1, 1, 35184372088832, 1, 1, 2251799813685248, 1, 1, 144115188075855872, 1
Offset: 1
Keywords
Examples
For n = 2 the a(2) = 8 predecessors of the all-ones matrix are the eight 2 X 2 binary matrices with one or three zero entries.
Links
- Carlos Rivera, Prime Puzzle #772
- Klaus Sutner, Linear Cellular Automata and the Garden-of-Eden, Mathematical Intelligencer Vol 11, No. 2 1989.
- Index entries related to cellular automata
Crossrefs
Cf. A013713.
Programs
-
Maple
a:=proc(n) local A,A1,V,E,i,j,G,f,g,w; V:=NULL: E:={}: for i from 1 to n do for j from 1 to n do V:=V,[i,j]; E:=E union {seq(seq({[i,j],[i+x,j+y]},x=-1..1),y=-1..1)}; od: od: V:=[V]; E:=remove(t->evalb(has(t,0) or has(t,n+1)),E): E:=remove(t->evalb(nops(t) = 1),E): for i from 1 to nops(V)do f(V[i]):=i: od: g:=proc(U) map(f,U); end: G:=GraphTheory:-Graph(map(f, V), map(g, E)); A:=GraphTheory:-AdjacencyMatrix(G)+LinearAlgebra[IdentityMatrix](n^2); A1:=LinearAlgebra:-Modular:-Mod(2, convert(A,listlist), integer[]); w:=n^2-LinearAlgebra:-Modular:-Rank(2, A1); return 2^w; end proc:
Formula
Empirical g.f.: -x*(64*x^5+8*x^4+64*x^3-x^2-8*x-1) / ((x-1)*(4*x-1)*(x^2+x+1)*(16*x^2+4*x+1)). - Colin Barker, Jan 31 2015
Comments