cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254503 Möbius transform of A034448.

Original entry on oeis.org

1, 2, 3, 2, 5, 6, 7, 4, 6, 10, 11, 6, 13, 14, 15, 8, 17, 12, 19, 10, 21, 22, 23, 12, 20, 26, 18, 14, 29, 30, 31, 16, 33, 34, 35, 12, 37, 38, 39, 20, 41, 42, 43, 22, 30, 46, 47, 24, 42, 40, 51, 26, 53, 36, 55, 28, 57, 58, 59, 30, 61, 62, 42, 32, 65, 66, 67, 34, 69, 70
Offset: 1

Views

Author

Álvar Ibeas, Jan 31 2015

Keywords

Crossrefs

Cf. A000010 (totient), A001694 (powerful), A005117 (squarefree), A034448 (usigma), A057521 (powerful part), A055231 (unitary squarefree kernel).

Programs

  • Mathematica
    Table[DivisorSum[n, MoebiusMu[#]^2*EulerPhi[n/#] &, CoprimeQ[n/#, #] &], {n, 70}] (* Michael De Vlieger, Jun 27 2018 *)
    f[p_, e_] := (p - 1)*p^(e - 1); f[p_, 1] := p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
  • PARI
    a(n) = {my(f = factor(n)); for (i=1, #f~, if ((e=f[i, 2]) > 1, f[i, 1] = eulerphi(f[i, 1]^e); f[i, 2] = 1);); factorback(f);} \\ Michel Marcus, Feb 06 2015
    
  • PARI
    a(n) = sumdiv(n, d, if(gcd(n/d, d) == 1, moebius(d)^2 * eulerphi(n/d))); \\ Daniel Suteu, Jun 27 2018

Formula

a(n) = phi(A057521(n)) * A055231(n).
If n is squarefree, a(n) = n; if n is powerful, a(n) = phi(n).
Multiplicative with a(p) = p; a(p^e) = phi(p^e), for e > 1.
Dirichlet g.f.: zeta(s-1) / zeta(2s-1).
a(n) = Sum_{d|n, gcd(n/d, d) = 1} mu(d)^2 * phi(n/d). - Daniel Suteu, Jun 27 2018
Sum_{k=1..n} a(k) ~ n^2 / (2*zeta(3)). - Vaclav Kotesovec, Jan 11 2019