A254503 Möbius transform of A034448.
1, 2, 3, 2, 5, 6, 7, 4, 6, 10, 11, 6, 13, 14, 15, 8, 17, 12, 19, 10, 21, 22, 23, 12, 20, 26, 18, 14, 29, 30, 31, 16, 33, 34, 35, 12, 37, 38, 39, 20, 41, 42, 43, 22, 30, 46, 47, 24, 42, 40, 51, 26, 53, 36, 55, 28, 57, 58, 59, 30, 61, 62, 42, 32, 65, 66, 67, 34, 69, 70
Offset: 1
Links
- Álvar Ibeas, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[DivisorSum[n, MoebiusMu[#]^2*EulerPhi[n/#] &, CoprimeQ[n/#, #] &], {n, 70}] (* Michael De Vlieger, Jun 27 2018 *) f[p_, e_] := (p - 1)*p^(e - 1); f[p_, 1] := p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
-
PARI
a(n) = {my(f = factor(n)); for (i=1, #f~, if ((e=f[i, 2]) > 1, f[i, 1] = eulerphi(f[i, 1]^e); f[i, 2] = 1);); factorback(f);} \\ Michel Marcus, Feb 06 2015
-
PARI
a(n) = sumdiv(n, d, if(gcd(n/d, d) == 1, moebius(d)^2 * eulerphi(n/d))); \\ Daniel Suteu, Jun 27 2018
Formula
If n is squarefree, a(n) = n; if n is powerful, a(n) = phi(n).
Multiplicative with a(p) = p; a(p^e) = phi(p^e), for e > 1.
Dirichlet g.f.: zeta(s-1) / zeta(2s-1).
a(n) = Sum_{d|n, gcd(n/d, d) = 1} mu(d)^2 * phi(n/d). - Daniel Suteu, Jun 27 2018
Sum_{k=1..n} a(k) ~ n^2 / (2*zeta(3)). - Vaclav Kotesovec, Jan 11 2019