A254625 Integers n such that core(n), core(n+1), core(n+2) are smaller than n^(1/3) where core(n) is A007913(n), the squarefree part of n.
48, 629693, 8388223, 9841094, 1728322595, 19503452898, 27558254932, 2399283556900
Offset: 1
Examples
48 is a term since core(48)=3, core(49)=1, core(50)=2, these 3 values being smaller than 48^(1/3).
Links
- Jeremy Rouse and Yilin Yang, Three consecutive almost squares, arXiv:1502.00605 [math.NT], 2015.
Programs
-
PARI
isok(n) = my(cb = sqrtnint(n, 3)); (core(n) <= cb) && (core(n+1) <= cb) && (core(n+2) <= cb);
-
PARI
/* This program is a little sloppy in testing more points than needed near the start and end, but adding extra code to avoid this case would add to complexity without greatly affecting runtime. */ list(lim,startAt=27)=my(c0,c1,c2); for(c=sqrtnint(startAt\1,3), ceil(sqrtn(lim,3)), my(n=c^3+1,lm=(c+1)^3); while(n
c, n+=3; next); c1=core(n+1); if(c1>c, n+=2; next); c0=core(n); if(c0>c, n++; next); print1(n", "); n++)) \\ Charles R Greathouse IV, Jul 16 2015 -
Python
from operator import mul from functools import reduce from sympy import factorint def A007913(n): return reduce(mul,[1]+[p for p,e in factorint(n).items() if e % 2]) A254625_list, n, c0, c1, c2 = [], 1, 1, 8, 27 for _ in range(10**6): if max(c0,c1,c2) < n: A254625_list.append(n) n += 1 c0, c1, c2 = c1, c2, A007913(n+2)**3 # Chai Wah Wu, Feb 08 2015
Extensions
a(5)-a(7) from Charles R Greathouse IV, Jul 17 2015
a(8) from Giovanni Resta, Jul 17 2015
Comments