cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254642 Third partial sums of eighth powers (A001016).

Original entry on oeis.org

1, 259, 7335, 86765, 629174, 3314178, 13906578, 49183590, 152191935, 422931613, 1075761505, 2540663307, 5633367740, 11829663860, 23692442292, 45516670332, 84278105421, 150996708135, 262656041515, 444856105561, 735419759634, 1189222877270
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			First differences:   1, 255, 6305, 58975, 325089, ...(A022524)
--------------------------------------------------------------------
The eighth powers:   1, 256, 6561, 65536, 390625, ...(A001016)
--------------------------------------------------------------------
First partial sums:  1, 257, 6818, 72354, 462979, ...(A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ...(A253636)
Third partial sums:  1, 259, 7335, 86765, 629174, ...(this sequence)
		

Crossrefs

Programs

  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (3 + 2 n) (1 + 36 n - 69 n^2 + 45 n^4 + 18 n^5 + 2 n^6)/3960, {n, 22}]
    Accumulate[Accumulate[Accumulate[Range[22]^8]]]
    CoefficientList[Series[(1 + 247 x + 4293 x^2 + 15619 x^3 + 15619 x^4 + 4293 x^5 + 247 x^6 + x^7)/(- 1 + x)^12, {x, 0, 22}], x]
  • PARI
    a(n)=n*(1+n)*(2+n)*(3+n)*(3+2*n)*(1+36*n-69*n^2+45*n^4+18*n^5+2*n^6)/3960 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (x + 247*x^2 + 4293*x^3 + 15619*x^4 + 15619*x^5 + 4293*x^6 + 247*x^7 + x^8)/(- 1 + x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(3 + 2*n)*(1 + 36*n - 69*n^2 + 45*n^4 + 18*n^5 + 2*n^6)/3960.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + n^8.