cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A254647 Fourth partial sums of eighth powers (A001016).

Original entry on oeis.org

1, 260, 7595, 94360, 723534, 4037712, 17944290, 67127880, 219319815, 642251428, 1718012933, 4258676240, 9892043980, 21721707840, 45414150132, 90930820464, 175208925885, 326205634020, 588861675535, 1033717781096, 1769137540730, 2958360418000, 4842936861750, 7774492635000
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Examples

			The eighth powers:   1, 256, 6561, 65536, 390625, ... (A001016)
First partial sums:  1, 257, 6818, 72354, 462979, ... (A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636)
Third partial sums:  1, 259, 7335, 86765, 629174, ... (A254642)
Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (this sequence)
		

Crossrefs

Programs

  • GAP
    List([1..30], n-> Binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n(1+n)(2+n)^2(3+n)(4+n)(1+4n+n^2)(21 -48n +20n^2 +16n^3 +2n^4 )/23760, {n,20}] (* or *)
    Accumulate[Accumulate[Accumulate[Accumulate[Range[20]^8]]]] (* or *)
    CoefficientList[Series[(1 +247x +4293x^2 +15619x^3 +15619x^4 +4293x^5 + 247x^6 +x^7)/(1-x)^13, {x,0,19}], x]
  • PARI
    a(n)=n*(1+n)*(2+n)^2*(3+n)*(4+n)*(1+4*n+n^2)*(21-48*n+20*n^2 +16*n^3+2*n^4)/23760 \\ Charles R Greathouse IV, Sep 08 2015
    
  • PARI
    vector(30, n, m=n+2; binomial(m+2,5)*m*(m^2-3)*(2*m^4-28*m^2 +101)/198)
    
  • Sage
    [binomial(n+4,5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 +247*x +4293*x^2 +15619*x^3 +15619*x^4 +4293*x^5 +247*x^6 +x^7)/(1-x)^13.
a(n) = n*(1+n)*(2+n)^2*(3+n)*(4+n)*(1 +4*n +n^2)*(21 -48*n +20*n^2 + 16*n^3 +2*n^4)/23760.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^8.

A101095 Fourth difference of fifth powers (A000584).

Original entry on oeis.org

1, 28, 121, 240, 360, 480, 600, 720, 840, 960, 1080, 1200, 1320, 1440, 1560, 1680, 1800, 1920, 2040, 2160, 2280, 2400, 2520, 2640, 2760, 2880, 3000, 3120, 3240, 3360, 3480, 3600, 3720, 3840, 3960, 4080, 4200, 4320, 4440, 4560, 4680, 4800, 4920, 5040, 5160, 5280
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original Name: Shells (nexus numbers) of shells of shells of shells of the power of 5.
The (Worpitzky/Euler/Pascal Cube) "MagicNKZ" algorithm is: MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n, with k>=0, n>=1, z>=0. MagicNKZ is used to generate the n-th accumulation sequence of the z-th row of the Euler Triangle (A008292). For example, MagicNKZ(3,k,0) is the 3rd row of the Euler Triangle (followed by zeros) and MagicNKZ(10,k,1) is the partial sums of the 10th row of the Euler Triangle. This sequence is MagicNKZ(5,k-1,2).

Crossrefs

Fourth differences of A000584, third differences of A022521, second differences of A101098, and first differences of A101096.
For other sequences based upon MagicNKZ(n,k,z):
...... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7 | n = 8
--------------------------------------------------------------------------------------
z = 0 | A000007 | A019590 | ....... MagicNKZ(n,k,0) = T(n,k+1) from A008292 .......
z = 1 | A000012 | A040000 | A101101 | A101104 | A101100 | ....... | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | thisSeq | ....... | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181 | .......
z = 12 | A001288 | A057788 | ....... | A254870 | A254471 | A254683 | A254646 | A254642
z = 13 | A010965 | ....... | ....... | ....... | A254871 | A254472 | A254684 | A254647
z = 14 | A010966 | ....... | ....... | ....... | ....... | A254872 | ....... | .......
--------------------------------------------------------------------------------------
Cf. A047969.

Programs

  • Magma
    I:=[1,28,121,240,360]; [n le 5 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, May 07 2015
    
  • Mathematica
    MagicNKZ=Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 5, 5}, {z, 2, 2}, {k, 0, 34}]
    CoefficientList[Series[(1 + 26 x + 66 x^2 + 26 x^3 + x^4)/(1 - x)^2, {x, 0, 50}], x] (* Vincenzo Librandi, May 07 2015 *)
    Join[{1,28,121,240},Differences[Range[50]^5,4]] (* or *) LinearRecurrence[{2,-1},{1,28,121,240,360},50] (* Harvey P. Dale, Jun 11 2016 *)
  • PARI
    a(n)=if(n>3, 120*n-240, 33*n^2-72*n+40) \\ Charles R Greathouse IV, Oct 11 2015
  • Sage
    [1,28,121]+[120*(k-2) for k in range(4,36)] # Danny Rorabaugh, Apr 23 2015
    

Formula

a(k+1) = Sum_{j=0..k+1} (-1)^j*binomial(n + 1 - z, j)*(k - j + 1)^n; n = 5, z = 2.
For k>3, a(k) = Sum_{j=0..4} (-1)^j*binomial(4, j)*(k - j)^5 = 120*(k - 2).
a(n) = 2*a(n-1) - a(n-2), n>5. G.f.: x*(1+26*x+66*x^2+26*x^3+x^4) / (1-x)^2. - Colin Barker, Mar 01 2012

Extensions

MagicNKZ material edited, Crossrefs table added, SeriesAtLevelR material removed by Danny Rorabaugh, Apr 23 2015
Name changed and keyword 'uned' removed by Danny Rorabaugh, May 06 2015

A254641 Third partial sums of seventh powers (A001015).

Original entry on oeis.org

1, 131, 2577, 23723, 141694, 636426, 2331462, 7323954, 20396871, 51550213, 120271151, 262391493, 540659756, 1060489444, 1992739932, 3605846676, 6310148349, 10717864983, 17722868317, 28605158351, 45165823626, 69899222030, 106210179010, 158685165990
Offset: 1

Views

Author

Luciano Ancora, Feb 05 2015

Keywords

Crossrefs

Programs

  • GAP
    List([1..30], n-> Binomial(n+3,4)*(n^6+9*n^5+25*n^4+15*n^3-20*n^2 -6*n+6)/30); # G. C. Greubel, Aug 28 2019
  • Magma
    [Binomial(n+3,4)*(n^6+9*n^5+25*n^4+15*n^3-20*n^2-6*n+6)/30: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(binomial(n+3,4)*(n^6+9*n^5+25*n^4+15*n^3-20*n^2-6*n+6)/30, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    Table[n(1+n)(2+n)(3+n)(6 -6n -20n^2 +15n^3 +25n^4 +9n^5 +n^6)/720, {n, 30}]
    CoefficientList[Series[(1 +120x +1191x^2 +2416x^3 +1191x^4 +120x^5 + x^6)/(1-x)^11, {x, 0, 30}], x]
    Nest[Accumulate,Range[30]^7,3] (* or *) LinearRecurrence[{11,-55,165, -330,462,-462,330,-165,55,-11,1},{1,131,2577,23723, 141694, 636426, 2331462, 7323954,20396871,51550213,120271151},30] (* Harvey P. Dale, Jun 19 2018 *)
  • PARI
    Vec((1 +120*x +1191*x^2 +2416*x^3 +1191*x^4 +120*x^5 +x^6)/(1-x)^11 + O(x^40)) \\ Andrew Howroyd, Nov 06 2018
    
  • PARI
    vector(30, n, binomial(n+3,4)*(n^6+9*n^5+25*n^4+15*n^3-20*n^2 -6*n+6)/30) \\ G. C. Greubel, Aug 28 2019
    
  • Sage
    [binomial(n+3,4)*(n^6+9*n^5+25*n^4+15*n^3-20*n^2-6*n+6)/30 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

G.f.: x*(1 +120*x +1191*x^2 +2416*x^3 +1191*x^4 +120*x^5 +x^6)/(1-x)^11.
a(n) = n*(1+n)*(2+n)*(3+n)*(6 -6*n -20*n^2 +15*n^3 +25*n^4 +9*n^5 +n^6)/720.
E.g.f.: x (720 +46440*x +262440*x^2 +425910*x^3 +285264*x^4 +92526*x^5 +15600*x^6 +1380*x^7 +60*x^8 +x^9)*exp(x)/6!. - G. C. Greubel, Aug 28 2019

A255178 Second differences of eighth powers (A001016).

Original entry on oeis.org

1, 254, 6050, 52670, 266114, 963902, 2796194, 6927230, 15257090, 30683774, 57405602, 101263934, 170126210, 274309310, 427043234, 644975102, 948713474, 1363412990, 1919399330, 2652834494, 3606422402, 4830154814, 6382097570, 8329217150, 10748247554
Offset: 0

Views

Author

Luciano Ancora, Feb 21 2015

Keywords

Examples

			Second differences:  1, 254, 6050, 52670, 266114, ... (this sequence)
First differences:   1, 255, 6305, 58975, 325089, ... (A022524)
----------------------------------------------------------------------
The eighth powers:   1, 256, 6561, 65536, 390625, ... (A001016)
----------------------------------------------------------------------
First partial sums:  1, 257, 6818, 72354, 462979, ... (A000542)
Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636)
Third partial sums:  1, 259, 7335, 86765, 629174, ... (A254642)
Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (A254647)
		

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else 2*(28*n^6+70*n^4+28*n^2+1): n in [0..30]]; // Vincenzo Librandi, Mar 12 2015
  • Mathematica
    Join[{1}, Table[2 (28 n^6 + 70 n^4 + 28 n^2 + 1), {n, 1, 30}]]
    Join[{1},Differences[Range[0,30]^8,2]] (* Harvey P. Dale, Aug 26 2024 *)

Formula

G.f.: (1 + x)*(1 + 246*x + 4047*x^2 + 11572*x^3 + 4047*x^4 + 246*x^5 + x^6)/(1 - x)^7.
a(n) = 2*(28*n^6 + 70*n^4 + 28*n^2 + 1) for n>0, a(0)=1.

Extensions

Edited by Bruno Berselli, Mar 19 2015

A255182 Third differences of eighth powers (A001016).

Original entry on oeis.org

1, 253, 5796, 46620, 213444, 697788, 1832292, 4131036, 8329860, 15426684, 26721828, 43858332, 68862276, 104183100, 152733924, 217931868, 303738372, 414699516, 555986340, 733435164, 953587908, 1223732412, 1551942756, 1947119580, 2419030404, 2978349948
Offset: 0

Views

Author

Luciano Ancora, Mar 18 2015

Keywords

Examples

			Third differences:   1, 253, 5796, 46620, 213444, ...  (this sequence)
Second differences:  1, 254, 6050, 52670, 266114, ...  (A255178)
First differences:   1, 255, 6305, 58975, 325089, ...  (A022524)
---------------------------------------------------------------------
The seventh powers:  1, 253, 5796, 46620, 213444, ...  (A001016)
---------------------------------------------------------------------
		

Crossrefs

Programs

  • Magma
    [1,253] cat [84*(2*n-1)*(2*n^4-4*n^3+8*n^2-6*n+3): n in [2..30]]; // Vincenzo Librandi, Mar 18 2015
  • Mathematica
    Join[{1, 253}, Table[84 (2 n - 1) (2 n^4 - 4 n^3 + 8 n^2 - 6 n + 3), {n, 2, 30}]]

Formula

G.f.: (1 + 247*x + 4293*x^2 + 15619*x^3 + 15619*x^4 + 4293*x^5 + 247*x^6 + x^7)/(1 - x)^6.
a(n) = 84*(2*n - 1)*(2*n^4 - 4*n^3 + 8*n^2 - 6*n + 3) for n>1, a(0)=1, a(1)=253.

Extensions

Edited by Bruno Berselli, Mar 19 2015
Showing 1-5 of 5 results.