A254661 Number of ways to write n as the sum of a triangular number, an even square and a second pentagonal number.
1, 1, 1, 2, 1, 2, 2, 3, 2, 1, 3, 1, 3, 1, 2, 2, 3, 4, 2, 4, 1, 5, 3, 2, 2, 3, 4, 2, 3, 3, 3, 3, 4, 3, 3, 1, 5, 3, 3, 4, 4, 4, 3, 5, 5, 4, 5, 5, 2, 2, 2, 6, 5, 2, 4, 3, 2, 6, 3, 6, 2, 5, 5, 4, 5, 3, 7, 5, 4, 1, 4, 6, 8, 3, 5, 1, 6, 6, 5, 6, 4, 6, 6, 4, 4, 7, 3, 5, 2, 5, 2, 5, 5, 7, 6, 2, 7, 6, 4, 4, 5
Offset: 0
Keywords
Examples
a(20) = 1 since 20 = 1*2/2 + 2^2 + 3*(3*3+1)/2. a(35) = 1 since 35 = 7*8/2 + 0^2 + 2*(3*2+1)/2. a(69) = 1 since 69 = 2*3/2 + 8^2 + 1*(3*1+1)/2. a(75) = 1 since 75 = 9*10/2 + 2^2 + 4*(3*4+1)/2. a(188) = 1 since 188 = 1*2/2 + 0^2 + 11*(3*11+1)/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, On universal sums of polygonal numbers, arXiv:0905.0635 [math.NT], 2009-2015.
Programs
-
Mathematica
TQ[n_]:=IntegerQ[Sqrt[8n+1]] Do[r=0;Do[If[TQ[n-4y^2-z(3z+1)/2],r=r+1],{y,0,Sqrt[n/4]},{z,0,(Sqrt[24(n-4y^2)+1]-1)/6}]; Print[n," ",r];Label[aa];Continue,{n,0,100}]
Comments