cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A266451 Semiprimes that are the sum of six consecutive semiprimes.

Original entry on oeis.org

58, 91, 123, 142, 161, 205, 278, 473, 566, 614, 706, 718, 802, 838, 851, 889, 1079, 1211, 1226, 1238, 1262, 1286, 1385, 1415, 1633, 1714, 1819, 1891, 1945, 2005, 2123, 2147, 2194, 2217, 2327, 2374, 2427, 2563, 2594, 2653, 2771, 2815, 2854, 2947, 2987, 3118, 3133, 3151, 3199, 3214, 3305, 3379
Offset: 1

Views

Author

Zak Seidov, Dec 29 2015

Keywords

Examples

			58 = A001358(21) = A001358(1) + ... + A001358(6) = 4+6+9+10+14+15,
91 = A001358(31) = A001358(3) + ... + A001358(8) = 9+10+14+15+21+22.
		

Crossrefs

Programs

  • Maple
    N:= 10^4: # to get all terms where the 6 consecutive semiprimes <= N
    P:= select(isprime, [2,seq(i,i=3..N/2,2)]): nP:= nops(P):
    SP:= NULL:
    for i from 1 to nP do
      for j from 1 to nP while P[i]*P[j] <= N do od:
      SP:= SP, op(map(`*`,P[i],P[1..j-1]));
    od:
    SP:= sort(convert({SP},list)): nSP:= nops(SP):
    select(numtheory:-bigomega=2, [seq(convert(SP[i..i+5],`+`),i=1..nSP-5)]): # Robert Israel, Nov 19 2017
  • Mathematica
    Select[(Total[#] & /@ Partition[Select[Range[4, 9999], 2 == PrimeOmega[#] &], 6, 1]), 2 == PrimeOmega[#] &]

A265438 Smallest semiprime that is the sum of n consecutive semiprimes.

Original entry on oeis.org

4, 10, 25, 39, 69, 58, 133, 122, 249, 209, 185, 219, 254, 327, 458, 377, 473, 579, 745, 589, 951, 898, 1047, 843, 917, 1382, 1157, 1243, 1247, 1678, 1514, 1895, 1703, 1707, 2138, 2147, 2599, 2157, 2509, 2515, 2519, 2642, 2771, 3566, 4126, 3317, 3599, 3891, 4198, 3755, 4369, 4223, 4227
Offset: 1

Views

Author

Zak Seidov, Dec 09 2015

Keywords

Comments

The sequence is non-monotonic. But are all the terms distinct?
A092190 is a subsequence. More precisely, a(A092189(k)) = A092190(k). - Altug Alkan, Dec 13 2015

Examples

			a(1) = 4 = A001358(1),
a(2) = 10 = A001358(3) = A092192(1) = A001358(1)+A001358(2) = 4+6,
a(3) = 25 = A001358(9) = A131610(1),
a(4) = 39 = A001358(15) = A158339(1),
a(5) = 69 = A001358(24) = A254712(1),
a(6) = 58 = A001358(21) = A266451(1).
		

Crossrefs

Showing 1-2 of 2 results.