A254713 All numbers k such that the number of distinct parts of all A045917(k) Goldbach partitions of 2k is prime.
4, 5, 6, 7, 11, 13, 17, 19, 23, 29, 31, 53, 59, 61, 67, 73, 83, 89, 97, 101, 103, 109, 113, 127, 131, 139, 151, 157, 163, 173, 179, 191, 193, 199, 223, 227, 229, 251, 263, 271, 307, 313, 337, 347, 353, 359, 367, 379, 389, 401, 449, 479, 521, 523, 577, 587, 599, 601, 607, 613, 631, 643
Offset: 1
Examples
For k = 4, 2k = 8. The number of the distinct Goldbach parts of 8 (3 and 5) is prime, therefore 4 is in the sequence. 5 is in the sequence because the 2 = A045917(5) Goldbach partitions of 10 are 5 + 5 and 3 + 7, and there are 3 distinct parts, namely 3, 5 and 7. - _Wolfdieter Lang_, Feb 23 2015
Links
- Eric Weisstein's World of Mathematics, Goldbach Partition.
Programs
-
Mathematica
lstIn={};lstFin={}; goldPart[x_]:=Module[{h=x/2},While[h>1,If[And[PrimeQ[h],PrimeQ[x-h]],AppendTo[lstIn,{h,x-h}]];h--]; lstFin=Length[Union[Flatten[lstIn]]];lstIn={};lstFin]; a254713=Flatten[Position[PrimeQ[goldPart/@Range[2,2002,2]],True]]
Extensions
Edited. Wolfdieter Lang, Feb 23 2015
Comments