A254730 Triangle read by rows: T(n,k) = A243758(n)/(A243758(k)*A243758(n-k)).
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 1, 1, 1, 6, 6, 6, 6, 1, 1, 1, 1, 1, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 1, 6, 6, 6
Offset: 0
Examples
The first six terms in A234959 are 1, 1, 1, 1, 1 and 6 and so T(4,2) = 1*1*1*1/((1*1)*(1*1))=1 and T(6,3) = 6*1*1*1*1*1/((1*1*1)*(1*1*1))=6. The triangle begins: 1 1, 1 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1 1, 6, 6, 6, 6, 6, 1 1, 1, 6, 6, 6, 6, 1, 1 1, 1, 1, 6, 6, 6, 1, 1, 1 1, 1, 1, 1, 6, 6, 1, 1, 1, 1 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 6, 6, 6, 6, 6, 1, 6, 6, 6, 6, 6, 1 1, 1, 6, 6, 6, 6, 1, 1, 6, 6, 6, 6, 1, 1 1, 1, 1, 6, 6, 6, 1, 1, 1, 6, 6, 6, 1, 1, 1 1, 1, 1, 1, 6, 6, 1, 1, 1, 1, 6, 6, 1, 1, 1, 1 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.
- Tyler Ball and Daniel Juda, Dominance over N, Rose-Hulman Undergraduate Mathematics Journal, Vol. 13, No. 2, Fall 2013.
- Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.
Programs
-
Haskell
import Data.List (inits) a254730 n k = a254730_tabl !! n !! k a254730_row n = a254730_tabl !! n a254730_tabl = zipWith (map . div) a243758_list $ zipWith (zipWith (*)) xss $ map reverse xss where xss = tail $ inits a243758_list -- Reinhard Zumkeller, Feb 09 2015
-
Sage
P=[0]+[6^valuation(i,6) for i in [1..100]] [m for sublist in [[mul(P[1:n+1])/(mul(P[1:k+1])*mul(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] for m in sublist]
Comments