A254731 Number of ON cells in the even-rule cellular automaton after n steps with the Moore neighborhood (8 neighbors), with minimal nontrivial symmetric initial state (0,0), (0,1), (1,0), and (1,1) ON.
4, 8, 24, 20, 32, 68, 48, 72, 116, 88, 104, 140, 188, 160, 284, 272, 268, 320, 372, 352, 496, 488, 524, 608, 556, 628, 692, 820, 764, 808, 864, 976, 1024, 920, 1032, 1228, 1188, 1256, 1408, 1496, 1488, 1564, 1584, 1712, 1752, 1708, 1888, 2148, 2040, 2100, 2308, 2392, 2544, 2480, 2760, 2752, 2764, 3064, 3020, 2976, 3516, 3440, 3560, 3580, 3804, 3816, 3916, 4236, 4492, 4340, 4516, 4512, 4984, 4764, 5004, 4880, 5116, 5716, 5540, 5560, 5564, 5840, 6200, 6368, 6280, 6668, 6880, 6908, 6960, 7600, 7388, 7396, 8028, 7832, 8332, 8152, 8268, 8928, 8708, 9144
Offset: 0
Keywords
Examples
For n=3, the configuration includes the initial four ON cells plus four other 2 X 2 squares in each cardinal direction.
Crossrefs
Cf. A160239.
Programs
-
Mathematica
m = 100; n = 2 m + 1; A = Table[0, {p, 1, m}, {q, 1, n}, {z, 1, n}]; A[[1, m, m + 1]] = 1; A[[1, m, m]] = 1; A[[1, m + 1, m + 1]] = 1; A[[1, m + 1, m]] = 1; For[i = 2, i <= m, i++, For[x = 2, x <= n - 1, x++, For[y = 2, y <= n - 1, y++, sum = A[[i - 1, x - 1, y - 1]] + A[[i - 1, x, y - 1]] + A[[i - 1, x + 1, y - 1]] + A[[i - 1, x - 1, y]] + A[[i - 1, x + 1, y]] + A[[i - 1, x - 1, y + 1]] + A[[i - 1, x, y + 1]] + A[[i - 1, x + 1, y + 1]]; A[[i, x, y]] = If[sum > 0, 1 - Mod[sum, 2], 0]; ] ] ]; Table[Plus @@ Plus @@ A[[i, All, All]], {i, 1, m}] (* Kellen Myers, Feb 07 2015 *)
Comments