A254756 Numbers such that all their proper hexadecimal prefixes and suffixes represent primes.
34, 35, 37, 39, 43, 45, 50, 51, 53, 55, 59, 61, 82, 83, 85, 87, 91, 93, 114, 115, 117, 119, 123, 125, 178, 179, 181, 183, 187, 189, 210, 211, 213, 215, 219, 221, 595, 661, 663, 669, 691, 693, 763, 851, 947, 949, 979, 1333, 1339, 1341, 1429
Offset: 1
Examples
13 is not a member because its expansion in base 16 (0xD) cannot be sliced in two. 33 (equal to 0x21) is also not a member because 1 is not a prime, while 34 (equal to 0x22) is a member because 2 is a prime. 1339, equal to 0x53B, is a member because all its proper hexadecimal prefixes and postfixes (0x5, 0x53, 0x3B, and 0xB) are prime. The largest member is 0x259D397.
Links
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- Stanislav Sykora, PARI/GP scripts for genetic threads
Programs
-
PARI
\\ For the function GT_Trunc1 see A237600 and/or the link. slicesIntoPrimes(n, b=10) = { \\ Same function as in A254751. my(k=b); if(n0, if(!isprime(n\k)||!isprime(n%k), return(0); ); k*=b; ); return(1); } NumbersSlicingIntoPrimes(nmax,b=10) = { my(rtp=GT_Trunc1(nmax,isprime,b)); \\ rtp right-truncatable primes my(a=vector(b*#rtp),irtp,d,an,n=0); for(irtp=1,#rtp, \\ For each rtp, append a digit and test for(d=0,b-1,an=b*rtp[irtp]+d; if(slicesIntoPrimes(an,b),n++;a[n]=an));); return(a[1..n]);} v = NumbersSlicingIntoPrimes(1000000,16) \\ Call with nmax>>414,base 16
-
Python
from gmpy2 import is_prime A254756_list = [] for n in range(16,10**6): s = format(n,'x') for i in range(1,len(s)): if not (is_prime(int(s[i:],16)) and is_prime(int(s[:-i],16))): break else: A254756_list.append(n) # Chai Wah Wu, Apr 16 2015
Comments