A254791 Nontrivial solutions to n = sigma(a) = sigma(b) (A000203) and rad(a) = rad(b) (A007947) with a != b.
4800, 142800, 1909440, 32948784, 210313800, 993938400, 1069286400, 1264808160, 1309463064, 2281635216, 3055104000, 3250790400
Offset: 1
Keywords
Examples
Sigma => Pair of distinct integers 4800 => 2058 = 2 * 3 * 7^3 and 1512 = 2^3 * 3^3 * 7142800 => 52728 = 2^3 * 3 * 13^3 and 44928 = 2^7 * 3^3 * 131909440 => 1038230 = 2 * 5 * 47^3 and 752000 = 2^7 * 5^3 * 4732948784 => 10825650 = 2 * 3^9 * 5^2 * 11 and 8624880 = 2^4 * 3^4 * 5 * 11^3210313800 => 131576362 = 2 * 17 * 157^3 and 98731648 = 2^7 * 17^3 * 157993938400 => 336110688 = 2^5 * 3^3 * 73^3 and 326965248 = 2^11 * 3^7 * 73. The pairs that contribute to the solution each have the same rad or squarefree kernel and they are "nontrivial" because within a pair for the same prime, none of the exponents match.
Comments