cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254870 Seventh partial sums of fourth powers (A000583).

Original entry on oeis.org

1, 23, 221, 1355, 6239, 23465, 75803, 217373, 566150, 1361802, 3063502, 6508450, 13159666, 25481470, 47493274, 85567222, 149553199, 254336185, 421956275, 684451365, 1087616985, 1695917535, 2598828765, 3918943275, 5822229660, 8530902276, 12339433068
Offset: 1

Views

Author

Luciano Ancora, Feb 17 2015

Keywords

Examples

			Second differences:   2, 14,  50,  110,  194,   302, ...   A120328(2k+1)
First differences:    1, 15,  65,  175,  369,   671, ...   A005917
--------------------------------------------------------------------------
The fourth powers:    1, 16,  81,  256,  625,  1296, ...   A000583
--------------------------------------------------------------------------
First partial sums:   1, 17,  98,  354,  979,  2275, ...   A000538
Second partial sums:  1, 18, 116,  470, 1449,  3724, ...   A101089
Third partial sums:   1, 19, 135,  605, 2054,  5778, ...   A101090
Fourth partial sums:  1, 20, 155,  760, 2814,  8592, ...   A101091
Fifth partial sums:   1, 21, 176,  936, 3750, 12342, ...   A254681
Sixth partial sums:   1, 22, 198, 1134, 4884, 17226, ...   A254470
Seventh partial sums: 1, 23, 221, 1355, 6239, 23465, ...   (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(7+n)*(7+2*n)*(7 +42*n+6*n^2)/19958400: n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) (7 + 2 n)((7 + 42 n + 6 n^2)/19958400), {n, 24}] (* or *)
    CoefficientList[Series[(1 + 11 x + 11 x^2 + x^3)/(- 1 + x)^12, {x, 0, 23}], x]
  • PARI
    vector(50,n,n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(7 + 2*n)*(7 + 42*n + 6*n^2)/19958400) \\ Derek Orr, Feb 19 2015
    

Formula

G.f.: (x + 11*x^2 + 11*x^3 + x^4)/(- 1 + x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(7 + 2*n)*(7 + 42*n + 6*n^2)/19958400.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + n^4.