A254870 Seventh partial sums of fourth powers (A000583).
1, 23, 221, 1355, 6239, 23465, 75803, 217373, 566150, 1361802, 3063502, 6508450, 13159666, 25481470, 47493274, 85567222, 149553199, 254336185, 421956275, 684451365, 1087616985, 1695917535, 2598828765, 3918943275, 5822229660, 8530902276, 12339433068
Offset: 1
Examples
Second differences: 2, 14, 50, 110, 194, 302, ... A120328(2k+1) First differences: 1, 15, 65, 175, 369, 671, ... A005917 -------------------------------------------------------------------------- The fourth powers: 1, 16, 81, 256, 625, 1296, ... A000583 -------------------------------------------------------------------------- First partial sums: 1, 17, 98, 354, 979, 2275, ... A000538 Second partial sums: 1, 18, 116, 470, 1449, 3724, ... A101089 Third partial sums: 1, 19, 135, 605, 2054, 5778, ... A101090 Fourth partial sums: 1, 20, 155, 760, 2814, 8592, ... A101091 Fifth partial sums: 1, 21, 176, 936, 3750, 12342, ... A254681 Sixth partial sums: 1, 22, 198, 1134, 4884, 17226, ... A254470 Seventh partial sums: 1, 23, 221, 1355, 6239, 23465, ... (this sequence)
Links
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Crossrefs
Programs
-
Magma
[n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(7+n)*(7+2*n)*(7 +42*n+6*n^2)/19958400: n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
-
Mathematica
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) (7 + 2 n)((7 + 42 n + 6 n^2)/19958400), {n, 24}] (* or *) CoefficientList[Series[(1 + 11 x + 11 x^2 + x^3)/(- 1 + x)^12, {x, 0, 23}], x]
-
PARI
vector(50,n,n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(7 + 2*n)*(7 + 42*n + 6*n^2)/19958400) \\ Derek Orr, Feb 19 2015
Formula
G.f.: (x + 11*x^2 + 11*x^3 + x^4)/(- 1 + x)^12.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(7 + 2*n)*(7 + 42*n + 6*n^2)/19958400.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + n^4.