cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A254871 Seventh partial sums of fifth powers (A000584).

Original entry on oeis.org

1, 39, 495, 3705, 19995, 85917, 311493, 989235, 2823990, 7383610, 17931498, 40889862, 88304970, 181852230, 359140470, 683363994, 1257722271, 2246496825, 3905261425, 6623425575, 10983195405, 17840105595, 28431558675, 44521334325, 68589834300, 104081944356
Offset: 1

Views

Author

Luciano Ancora, Feb 17 2015

Keywords

Examples

			Second differences:      30, 180,  570,  1320,  2550, ...   (A068236)
First differences:    1, 31, 211,  781,  2101,  4651, ...   (A022521)
------------------------------------------------------------------------
The fifth powers:     1, 32, 243, 1024,  3125,  7776, ...   (A000584)
------------------------------------------------------------------------
First partial sums:   1, 33, 276, 1300,  4425, 12201, ...   (A000539)
Second partial sums:  1, 34, 310, 1610,  6035, 18236, ...   (A101092)
Third partial sums:   1, 35, 345, 1955,  7990, 26226, ...   (A101099)
Fourth partial sums:  1, 36, 381, 2336, 10326, 36552, ...   (A254644)
Fifth partial sums:   1, 37, 418, 2754, 13080, 49632, ...   (A254682)
Sixth partial sums:   1, 38, 456, 3210, 16290, 65922, ...   (A254471)
Seventh partial sums: 1, 39, 495, 3705, 19995, 85917, ... (this sequence)
		

Crossrefs

Programs

  • Magma
    [n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(7+n)*(-21+49*n +56*n^2+14*n^3+n^4)/3991680: n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
  • Mathematica
    Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) ((-21 + 49 n + 56 n^2 + 14 n^3 + n^4)/3991680), {n, 23}] (* or *)
    CoefficientList[Series[(- 1 - 26 x - 66 x^2 - 26 x^3 - x^4)/(- 1 + x)^13, {x, 0, 22}], x]
  • PARI
    vector(50, n, n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(-21 + 49*n + 56*n^2 + 14*n^3 + n^4)/3991680) \\ Derek Orr, Feb 19 2015
    

Formula

G.f.: (- x - 26*x^2 - 66*x^3 - 26*x^4 - x^5)/(- 1 + x)^13.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(-21 + 49*n + 56*n^2 + 14*n^3 + n^4)/3991680.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + n^5.