A254871 Seventh partial sums of fifth powers (A000584).
1, 39, 495, 3705, 19995, 85917, 311493, 989235, 2823990, 7383610, 17931498, 40889862, 88304970, 181852230, 359140470, 683363994, 1257722271, 2246496825, 3905261425, 6623425575, 10983195405, 17840105595, 28431558675, 44521334325, 68589834300, 104081944356
Offset: 1
Examples
Second differences: 30, 180, 570, 1320, 2550, ... (A068236) First differences: 1, 31, 211, 781, 2101, 4651, ... (A022521) ------------------------------------------------------------------------ The fifth powers: 1, 32, 243, 1024, 3125, 7776, ... (A000584) ------------------------------------------------------------------------ First partial sums: 1, 33, 276, 1300, 4425, 12201, ... (A000539) Second partial sums: 1, 34, 310, 1610, 6035, 18236, ... (A101092) Third partial sums: 1, 35, 345, 1955, 7990, 26226, ... (A101099) Fourth partial sums: 1, 36, 381, 2336, 10326, 36552, ... (A254644) Fifth partial sums: 1, 37, 418, 2754, 13080, 49632, ... (A254682) Sixth partial sums: 1, 38, 456, 3210, 16290, 65922, ... (A254471) Seventh partial sums: 1, 39, 495, 3705, 19995, 85917, ... (this sequence)
Links
- Luciano Ancora, Table of n, a(n) for n = 1..1000
- Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials
- Luciano Ancora, Pascal’s triangle and recurrence relations for partial sums of m-th powers
- Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).
Crossrefs
Programs
-
Magma
[n*(1+n)*(2+n)*(3+n)*(4+n)*(5+n)*(6+n)*(7+n)*(-21+49*n +56*n^2+14*n^3+n^4)/3991680: n in [1..30]]; // Vincenzo Librandi, Feb 19 2015
-
Mathematica
Table[n (1 + n) (2 + n) (3 + n) (4 + n) (5 + n) (6 + n) (7 + n) ((-21 + 49 n + 56 n^2 + 14 n^3 + n^4)/3991680), {n, 23}] (* or *) CoefficientList[Series[(- 1 - 26 x - 66 x^2 - 26 x^3 - x^4)/(- 1 + x)^13, {x, 0, 22}], x]
-
PARI
vector(50, n, n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(-21 + 49*n + 56*n^2 + 14*n^3 + n^4)/3991680) \\ Derek Orr, Feb 19 2015
Formula
G.f.: (- x - 26*x^2 - 66*x^3 - 26*x^4 - x^5)/(- 1 + x)^13.
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(4 + n)*(5 + n)*(6 + n)*(7 + n)*(-21 + 49*n + 56*n^2 + 14*n^3 + n^4)/3991680.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) + n^5.