A254876 Triangular table T(n,k) = n! / Product_{m=(n-floor((2n)/(3^k))) .. (n-floor((n)/(3^k)))} m, read by rows T(1,1), T(2,1), T(2,2), T(3,1), T(3,2), T(3,3), ...
1, 1, 1, 3, 2, 2, 4, 6, 6, 6, 5, 6, 24, 24, 24, 30, 24, 120, 120, 120, 120, 84, 120, 720, 720, 720, 720, 720, 112, 720, 5040, 5040, 5040, 5040, 5040, 5040, 1008, 6480, 40320, 40320, 40320, 40320, 40320, 40320, 40320, 4320, 50400, 362880, 362880, 362880, 362880, 362880, 362880, 362880, 362880
Offset: 1
Examples
The first rows of the triangular table: 1 1, 1 3, 2, 2 4, 6, 6, 6 5, 6, 24, 24, 24 30, 24, 120, 120, 120, 120 84, 120, 720, 720, 720, 720, 720 112, 720, 5040, 5040, 5040, 5040, 5040, 5040 1008, 6480, 40320, 40320, 40320, 40320, 40320, 40320, 40320 4320, 50400, 362880, 362880, 362880, 362880, 362880, 362880, 362880, 362880 ...
Links
Programs
-
PARI
A254876bi(n, k) = n! / prod(i=(n-((2*n)\(3^k))), (n-(n\(3^k))), i);
-
Scheme
(define (A254876 n) (A254876bi (A002024 n) (A002260 n))) (define (A254876bi n k) (/ (A000142 n) (mul A000027 (- n (floor->exact (/ (* 2 n) (expt 3 k)))) (- n (floor->exact (/ n (expt 3 k))))))) (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
Formula
T(n,k) = n! / Product_{m=(n-floor((2n)/(3^k))) .. (n-floor((n)/(3^k)))} m.
Comments