A254878 Let 's' denote the sum of the deficient numbers in the aliquot parts of x. Sequence lists numbers x such that sigma(s) is equal to x.
4, 8, 32, 128, 168, 224, 756, 8192, 131072, 524288, 2147483648
Offset: 1
Examples
Aliquot parts of 8 are 1, 2, 4 that are all deficient numbers: sigma(1 + 2 + 4) = sigma(7) = 8. Aliquot parts of 168 are 1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84 and the deficient numbers are 1, 2, 3, 4, 7, 8, 14, 21: sigma(1 + 2 + 3 + 4 + 7 + 8 + 14 + 21) = sigma(60) = 168.
Programs
-
Maple
with(numtheory); P:=proc(q) local a,b,c,k,n; for n from 1 to q do a:=sort([op(divisors(n))]); b:=0; c:=0; for k from 1 to nops(a)-1 do if sigma(a[k])<2*a[k] then b:=b+a[k]; fi; od; if sigma(b)=n then print(n); fi; od; end: P(10^9);
-
Mathematica
seqQ[n_] := Module[{s = DivisorSum[n, # &, #
0 && DivisorSigma[1,s] == n]; Select[Range[10000], seqQ] (* Amiram Eldar, Mar 24 2019 *) -
PARI
isok(n) = my (s = sumdiv(n, d, d*((d!=n) && (sigma(d)/d < 2)))); s && (sigma(s) == n); \\ Michel Marcus, Feb 19 2015
Extensions
a(11) from Amiram Eldar, Mar 24 2019
Comments