A255160 Least positive integer m with A254885(m) = n.
1, 3, 10, 11, 19, 35, 55, 46, 71, 136, 86, 131, 200, 170, 221, 275, 271, 235, 236, 401, 341, 326, 491, 478, 586, 431, 731, 716, 536, 635, 775, 851, 821, 695, 1040, 950, 1241, 1171, 1160, 1031, 1306, 1115, 1801, 1460, 1706, 1391, 1531, 1685, 1790, 1670, 2081, 1745, 2161, 2021, 1976, 2330, 2350, 2216, 2645, 2615
Offset: 1
Keywords
Examples
a(3) = 10 since 10 is the least positive integer which can be written as the sum of two squares and a positive triangular number in exactly 3 ways. In fact, 10 = 0^2 + 0^2 + 4*5/2 = 0^2 + 2^2 + 3*4/2 = 0^2 + 3^2 + 1*2/2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..200
- Zhi-Wei Sun, Universal sums a*x^2+b*y^2+f(z), a*T_x+b*T_y+f(z) and a*T_x+b*y^2+f(z), arXiv:1502.03056 [math.NT], 2015.
Programs
-
Mathematica
TQ[n_]:=n>0&&IntegerQ[Sqrt[8n+1]] Do[Do[m=0;Label[aa];m=m+1;r=0;Do[If[TQ[m-x^2-y^2],r=r+1;If[r>n,Goto[aa]]],{x,0,Sqrt[m/2]},{y,x,Sqrt[m-x^2]}];If[r==n,Print[n," ",m];Goto[bb], Goto[aa]]];Label[bb];Continue,{n,1,60}]
Comments