cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A002334 Least positive integer x such that prime A038873(n) = x^2 - 2y^2 for some y.

Original entry on oeis.org

2, 3, 5, 5, 7, 7, 7, 11, 9, 9, 11, 13, 11, 11, 15, 13, 13, 13, 17, 15, 19, 15, 19, 17, 21, 17, 19, 17, 17, 19, 21, 25, 19, 19, 23, 25, 23, 21, 23, 21, 21, 29, 23, 25, 23, 27, 29, 23, 31, 33, 25, 29, 27, 25, 25, 27, 29, 35, 31, 31, 27, 29, 33, 31, 29, 29, 29, 29, 37, 31, 41, 35
Offset: 1

Views

Author

Keywords

Comments

A prime p is representable in the form x^2 - 2y^2 iff p is 2 or p == 1 or 7 (mod 8). - Pab Ter (pabrlos2(AT)yahoo.com), Oct 22 2005
From Wolfdieter Lang, Feb 17 2015: (Start)
For the corresponding y terms see A002335.
a(n), together with A002335(n), gives the fundamental positive solution of the first class of this (generalized) Pell equation. The prime 2 has only one class of proper solutions. The fundamental positive solutions of the second class for the primes from A001132 are given in A254930 and A254931. (End)

Examples

			The first solutions [x(n), y(n)] are (the prime is given as first entry): [2,[2,1]], [7,[3,1]], [17,[5,2]], [23,[5,1]], [31,[7,3]], [41,[7,2]], [47,[7,1]], [71,[11,5]], [73,[9,2]], [79,[9,1]], [89,[11,4]], [97,[13,6]], [103,[11,3]], [113,[11,2]], [127,[15,7]], [137,[13,4]], [151,[13,3]], [167,[13,1]], [191,[17,7]], [193,[15,4]], [199,[19,9]], [223,[15,1]], [233,[19,8]], [239,[17,5]], [241,[21,10]], [257,[17,4]], [263,[19,7]], [271,[17,3]], ... - _Wolfdieter Lang_, Feb 17 2015
		

References

  • A. J. C. Cunningham, Quadratic Partitions. Hodgson, London, 1904, p. 1.
  • D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory): readlib(issqr): for i from 1 to 250 do p:=ithprime(i): pmod8:=modp(p,8): if p=2 or pmod8=1 or pmod8=7 then for y from 1 do x2:=p+2*y^2: if issqr(x2) then printf("%d,",sqrt(x2)): break fi od fi od: # Pab Ter, May 08 2004
  • Mathematica
    maxPrimePi = 200;
    Reap[Do[If[MatchQ[Mod[p, 8], 1|2|7], rp = Reduce[x > 0 && y > 0 && p == x^2 - 2*y^2, {x, y}, Integers]; If[rp =!= False, xy = {x, y} /. {ToRules[rp /. C[1] -> 1]}; x0 = xy[[All, 1]] // Min // Simplify; Print[{p, xy[[1]]} ]; Sow[x0]]], {p, Prime[Range[maxPrimePi]]}]][[2, 1]] (* Jean-François Alcover, Oct 27 2019 *)

Formula

a(n)^2 - 2*A002335(n)^2 = A038873(n), n >= 1, and a(n) is the least positive integer satisfying this Pell type equation. - Wolfdieter Lang, Feb 12 2015

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004
The name has been changed in order to be more precise and to conform with A002335. The offset has been changed to 1. - Wolfdieter Lang, Feb 12 2015

A255247 Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A001132(n), n>=1 (primes congruent to {1,7} mod 8).

Original entry on oeis.org

5, 9, 7, 13, 11, 9, 21, 13, 11, 19, 25, 17, 15, 29, 21, 19, 15, 31, 23, 37, 17, 35, 27, 41, 25, 33, 23, 21, 29, 37, 49, 23, 21, 41, 47, 39, 29, 37, 25, 23, 57, 35, 43, 33, 49, 55, 27, 59, 65, 33, 51, 43, 31, 29, 41, 49, 69, 55, 53, 29, 43, 59, 51, 41, 37, 35
Offset: 1

Views

Author

Wolfdieter Lang, Feb 19 2015

Keywords

Comments

For the corresponding term y2(n) see A255248(n).
For the positive fundamental proper (sometimes called primitive) solutions x1(n) and y1(n) of the first class of this (generalized) Pell equation see A255235(n) and A255246(n).
The present solutions of this second class are the next to smallest positive ones. Note that for prime 2 only the first class exists.
For the derivation based on the book of Nagell see the comments on A254934 and A254938 for the primes 1 (mod 8) and 7 (mod 8) separately, where also the Nagell reference is given.

Examples

			The first pairs [x1(n), y1(n)] of the fundamental positive solutions of this first class are (the prime A001132(n) is listed as first entry):
  [7, [5, 4]], [17, [9, 7]], [23, [7, 6]],
  [31, [13, 10]], [41, [11, 9]], [47, [9, 8]],
  [71, [21, 16]], [73, [13, 11]], [79, [11, 10]],
  [89, [19, 15]], [97, [25, 19]], [103, [17, 14]],
  [113, [15, 13]], [127, [29, 22]],
  [137, [21, 17]], [151, [19, 16]],
  [167, [15, 14]], [191, [31, 24]],
  [193, [23, 19]], [199, [37, 28]],
  [223, [17, 16]], [233, [35, 27]],
  [239, [27, 22]], [241, [41, 31]], ...
n = 1: 5^2 - 2*4^2 = 25 - 32 = -7 = -A001132(1).
a(3) = -(3*3 - 4*4) = 16 - 9 = 7.
		

Crossrefs

Formula

a(n)^2 - 2*A255248(n)^2 = -A001132(n), n >= 1, gives the second smallest positive (proper) solution of this (generalized) Pell equation.
a(n) = -(3*A255235(n+1) - 4*A255246(n+1)), n >= 1.

Extensions

More terms from Colin Barker, Feb 26 2015

A254931 Fundamental positive solution y = y2(n) of the second class of the Pell equation x^2 - 2*y^2 = A001132(n), n >= 1, (primes congruent to 1 or 7 mod 8).

Original entry on oeis.org

3, 4, 7, 5, 8, 11, 7, 12, 15, 10, 8, 13, 16, 9, 14, 17, 23, 13, 18, 11, 27, 14, 19, 12, 22, 17, 25, 28, 23, 18, 14, 32, 35, 19, 17, 22, 30, 25, 36, 39, 16, 28, 23, 31, 21, 19, 40, 20, 18, 38
Offset: 1

Views

Author

Wolfdieter Lang, Feb 12 2015

Keywords

Comments

The corresponding terms x = x2(n) are given in A254930(n).
The y2-sequence for the second class for the primes congruent to 1 (mod 8), which are given in A007519, is 2*A254763. For the primes congruent to 7 (mod 8), given in A007522, the y2-sequence is A254929.
For comments and the Nagell reference see A254760.

Examples

			a(4) = 2*7 - 3*3 = 5.
A254930(4)^2 - 2*a(4)^2 = 9^2 - 2*5^2 = 31 = A001132(4) = A007522(3).
See A254930 for the first pairs (x2(n), y2(n)).
		

Crossrefs

Programs

  • Mathematica
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[MatchQ[Mod[p, 8], 1|7], rp = Reduce[x > 0 && y > 0 && x^2 - 2 y^2 == p, {x, y}, Integers]; If[rp =!= False, xy = {x, y} /. {ToRules[rp /. C[1] -> 1]}; y2 = xy[[-1, 2]] // Simplify; Print[y2]; Sow[y2]]]]][[2, 1]] (* Jean-François Alcover, Oct 28 2019 *)

Formula

A254930(n)^2 - 2*a(n)^2 = A001132(n), and a(n) is the second largest (proper) positive integer satisfying this (generalized) Pell equation.
a(n) = 2*A002334(n+1) - 3*A002335(n+1), n >= 1.
Showing 1-3 of 3 results.