cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A255233 Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A007522(n), n >= 1 (primes congruent to 7 mod 8).

Original entry on oeis.org

5, 7, 13, 9, 21, 11, 17, 29, 19, 15, 31, 37, 17, 27, 33, 23, 29, 21, 41, 47, 37, 23, 43, 33, 49, 55, 51, 31, 41, 69, 53, 29, 43, 59, 35, 31, 45, 61, 41, 67, 85, 57, 47, 63, 43, 53, 35, 75, 93, 37, 71, 61, 83, 47, 89, 39, 73, 53, 63, 79, 49, 85, 69, 97, 103, 109, 55, 65, 47, 77, 67, 83, 49
Offset: 1

Views

Author

Wolfdieter Lang, Feb 18 2015

Keywords

Comments

The corresponding term y = y2(n) of this fundamental solution of the second class of the (generalized) Pell equation x^2 - 2*y^2 = -A007522(n) = -(1 + A139487(n)*8) is given in 2*A255234(n).
For comments and the Nagell reference see A254938.

Examples

			The first pairs [x2(n), y2(n)] of the fundamental positive solutions of this second class are (the prime A007522(n) appears as first entry):
  [7, [5, 4]], [23, [7, 6]], [31, [13, 10]],
  [47, [9, 8]], [71, [21, 16]], [79, [11, 10]], [103, [17, 14]], [127, [29, 22]],
  [151, [19, 16]], [167, [15, 14]],
  [191, [31, 24]], [199, [37, 28]],
  [223, [17, 16]], [239, [27, 22]],
  [263, [33, 26]], [271, [23, 20]],
  [311, [29, 24]], [359, [21, 20]],
  [367, [41, 32]], [383, [47, 36]],
  [431, [37, 30]], [439, [23, 22]],
  [463, [43, 34]], [479, [33, 28]], ...
n= 4: 9^2 - 2*(2*4)^2 = -47 = -A007522(4).
a(4) = -(3*5 - 4*(2*3)) = 24 - 15 = 9.
		

Crossrefs

Cf. A007522 (primes == 7 mod 8), A139487 (8k+7 is prime).
Cf. 2*A255234 (corresponding y2 values), A254938 (x1 values), 2*A255232 (y2 values), A255247, A254936.

Programs

  • PARI
    apply( {A255233(n, p=A007522(n))=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1]*[-3,4]~}, [1..88]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025

Formula

a(n)^2 - 2*(2*A255234(n))^2 = -A007522(n) gives the second smallest positive (proper) solution of this (generalized) Pell equation.
a(n) = -(3*A254938(n) - 4*2*A255232(n)), n >= 1.

Extensions

More terms from Colin Barker, Feb 23 2015
Double-checked and extended by M. F. Hasler, May 22 2025

A254936 Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A007519(n), n >= 1 (primes congruent to 1 mod 8).

Original entry on oeis.org

9, 11, 13, 19, 25, 15, 21, 23, 35, 41, 25, 21, 37, 49, 23, 39, 29, 25, 57, 35, 27, 59, 65, 33, 43, 29, 49, 55, 51, 41, 37, 69, 81, 39, 59, 35, 65, 71, 77, 83, 51, 67, 47, 43, 79, 39, 97, 69, 49, 59, 41, 87, 93, 61, 47, 57, 89, 53, 101, 79, 59, 85, 55, 91, 103, 81, 115, 53, 49, 63, 83, 73, 111, 59
Offset: 1

Views

Author

Wolfdieter Lang, Feb 18 2015

Keywords

Comments

The corresponding term y = y2(n) of this fundamental solution of the second class of the (generalized) Pell equation x^2 - 2*y^2 = -A007519(n) = -(1 + 8*A005123(n)) is given in A254937(n).
For comments and the Nagell reference see A254934.

Examples

			The first pairs [x2(n), y2(n)] of the fundamental positive solutions of this second class are (the prime A007519(n) appears as first entry):
  [17, [9, 7]], [41, [11, 9]], [73, [13, 11]],
  [89, [19, 15]], [97, [25, 19]], [113, [15, 13]],
  [137, [21, 17]], [193, [23, 19]], [233, [35, 27]],
  [241, [41, 31]], [257, [25, 21]], [281, [21, 19]],
  [313, [37, 29]], [337, [49, 37]], [353, [23, 21]],
  [401, [39, 31]], [409, [29, 25]], [433, [25, 23]],
  [449, [57, 43]], [457, [35, 29]], [521, [27, 25]],
  [569, [59, 45]], [577, [65, 49]], [593, [33, 29]],
  [601, [43, 35]], [617, [29, 27]], [641, [49, 39]], ...
a(4) = -(3*3 - 4*7) = 28 - 9 = 19.
		

Crossrefs

Cf. A007519 (primes == 1 mod 8), A005123 (8k+1 is prime).
Cf. A254937 (corresponding y2-values), A254934 (x1 values), A254935 (y1 values), A255233 (same for primes == 7 mod 8), A255247.

Programs

  • PARI
    apply( {A254936(n, p=A007519(n))=n=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1]*[-3,4]~}, [1..77]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025

Formula

a(n)^2 - 2*A254937(n)^2 = -A007519(n) gives the second smallest positive (proper) solution of this (generalized) Pell equation.
a(n) = -(3*A254934(n) - 4*A254935(n)), n >= 1.

Extensions

More terms from M. F. Hasler, May 22 2025

A255235 Fundamental positive solution x = x1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A038873(n), n>=1 (primes congruent to {1,2,7} mod 8).

Original entry on oeis.org

4, 1, 1, 3, 1, 3, 5, 1, 5, 7, 3, 1, 5, 7, 1, 5, 7, 11, 3, 7, 1, 13, 3, 7, 1, 9, 5, 11, 13, 9, 5, 1, 15, 17, 5, 3, 7, 13, 9, 17, 19, 1, 11, 7, 13, 5, 3, 19, 3, 1, 17, 7, 11, 19, 21, 13, 9, 1, 7, 9, 25, 15, 7, 11, 17, 21, 23, 27, 5
Offset: 1

Views

Author

Wolfdieter Lang, Feb 25 2015

Keywords

Comments

For the corresponding term y1(n) see A255246(n).
The present solutions of this first class are the smallest positive ones.
For the positive fundamental proper (sometimes called primitive) solutions x2 and y2 of the second class of this (generalized) Pell equation see A255247 and A255248. There is no second class for prime 2.
For the first class solutions of this Pell equation with primes 1 (mod 8) see A254934 and A254935. For those with primes 7 (mod 8) see A254938 and 2*A255232. For the derivation of these solutions see A254934 and A254938, also for the Nagell reference.

Examples

			The first pairs [x1(n), y1(n)] of the fundamental positive solutions of this first class are
  (the prime A038873(n) is listed as first entry):
  [2,[4, 3]], [7, [1, 2]], [17, [1, 3]],
  [23, [3, 4]], [31, [1, 4]], [41, [3, 5]],
  [47, [5, 6]], [71, [1, 6]], [73, [5, 7]],
  [79, [7, 8]], [89, [3, 7]], [97, [1, 7]],
  [103, [5, 8]], [113, [7, 9]], [127, [1, 8]],
  [137, [5, 9]], [151, [7, 10]], [167, [11, 12]], [191, [3, 10]], [193, [7, 11]], [199, [1, 10]], [223, [13, 14]], [233, [3, 11]], [239, [7, 12]], [241, [1, 11]], [257, [9, 13]], [263, [5, 12]], ...
n=1: 4^2 - 2*3^2 = -2 = -A038873(1),
n=2: 1^2 - 2*2^2 = 1 - 8 = -7 = -A038873(2).
		

Crossrefs

Formula

a(n)^2 - A255246(n)^2 = - A038873(n), n >= 1, gives the smallest positive (proper) solution of this (generalized) Pell equation.

Extensions

More terms from Colin Barker, Feb 26 2015

A255246 Fundamental positive solution y = y1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A038873(n), n>=1 (primes congruent to {1,2,7} mod 8).

Original entry on oeis.org

3, 2, 3, 4, 4, 5, 6, 6, 7, 8, 7, 7, 8, 9, 8, 9, 10, 12, 10, 11, 10, 14, 11, 12, 11, 13, 12, 14, 15, 14, 13, 13, 17, 18, 14, 14, 15, 17, 16, 19, 20, 15, 17, 16, 18, 16, 16, 21, 17, 17, 21, 18, 19, 22, 23, 20, 19, 18, 19, 20, 26, 22, 20, 21, 23, 25, 26, 28, 21
Offset: 1

Views

Author

Wolfdieter Lang, Feb 25 2015

Keywords

Comments

For the corresponding term x1(n) see A255235(n).
For the primes 1 (mod 8) see A154935, and for the primes 7 (mod 8) see 2*A255232.
See A254934 and A254938 also for the derivation based on the Nagell reference given there.

Examples

			See A255235.
n = 1: 4^2 - 2*3^2 = -2 = -A038873(1),
n = 3: 1^2 - 2*3^2 = 1 - 18 = -17 = -A038873(3).
		

Crossrefs

Formula

A255235(n)^2 - 2*a(n)^2 = -A038873(n) gives the smallest positive (proper) solution of this (generalized) Pell equation.

Extensions

More terms from Colin Barker, Feb 26 2015

A255248 Fundamental positive solution y = y2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A001132(n), n>=1 (primes congruent to {1,7} mod 8).

Original entry on oeis.org

4, 7, 6, 10, 9, 8, 16, 11, 10, 15, 19, 14, 13, 22, 17, 16, 14, 24, 19, 28, 16, 27, 22, 31, 21, 26, 20, 19, 24, 29, 37, 21, 20, 32, 36, 31, 25, 30, 23, 22, 43, 29, 34, 28, 38, 42, 25, 45, 49, 29, 40, 35, 28, 27, 34, 39, 52, 43, 42, 28, 36, 46, 41, 35, 33, 32
Offset: 1

Views

Author

Wolfdieter Lang, Feb 19 2015

Keywords

Comments

For the corresponding term x2(n) see A255247(n).
See the comments on A255247.

Examples

			See A255247.
a(4) = -(2*1 - 3*4) = 12 - 2 = 10.
n=4: 13^2 - 2*10^2 = 169 - 200 = -31 = -A001132(4).
		

Crossrefs

Formula

A255247(n)^2 - 2*a(n)^2 = -A001132(n), n >= 1, gives the second smallest positive (proper) solution of this (generalized) Pell equation.
a(n) = -(2*A255235(n+1) - 3*A255246(n+1)), n >= 1.

Extensions

More terms from Colin Barker, Feb 26 2015
Showing 1-5 of 5 results.