A255232
One half of the fundamental positive solution y = y1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A007522(n), n >= 1 (primes congruent to 7 mod 8).
Original entry on oeis.org
1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 5, 5, 7, 6, 6, 7, 7, 9, 7, 7, 8, 10, 8, 9, 8, 8, 9, 11, 10, 9, 10, 13, 11, 10, 13, 14, 12, 11, 13, 11, 11, 12, 13, 12, 14, 13, 16, 12, 12, 17, 13, 14, 13, 16, 13, 18, 14, 16, 15, 14, 17, 14, 15, 14, 14, 14, 17, 16, 19, 16, 17, 16, 20, 21, 17, 16, 17, 16, 16
Offset: 1
See A254938.
n = 3: 1^2 - 2*(2*2)^2 = 1 - 32 = -31 = -A007522(3).
-
apply( {A255232(n, p=A007522(n))=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1][2]\2}, [1..88]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025
A254935
Fundamental positive solution y = y1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A007519(n), n>=1 (primes congruent to 1 mod 8).
Original entry on oeis.org
3, 5, 7, 7, 7, 9, 9, 11, 11, 11, 13, 15, 13, 13, 17, 15, 17, 19, 15, 17, 21, 17, 17, 21, 19, 23, 19, 19, 21, 23, 25, 21, 21, 27, 23, 29, 23, 23, 23, 23, 27, 25, 29, 31, 25, 33, 25, 27, 31, 29, 35, 27, 27, 31, 35, 33, 29, 35, 29, 31, 35, 31, 37, 31, 31, 33, 31, 41, 43, 39, 35, 37, 33, 41, 33, 35, 41
Offset: 1
See A254934.
n = 3: 5^2 - 2*7^2 = 25 - 98 = -73.
A255235
Fundamental positive solution x = x1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A038873(n), n>=1 (primes congruent to {1,2,7} mod 8).
Original entry on oeis.org
4, 1, 1, 3, 1, 3, 5, 1, 5, 7, 3, 1, 5, 7, 1, 5, 7, 11, 3, 7, 1, 13, 3, 7, 1, 9, 5, 11, 13, 9, 5, 1, 15, 17, 5, 3, 7, 13, 9, 17, 19, 1, 11, 7, 13, 5, 3, 19, 3, 1, 17, 7, 11, 19, 21, 13, 9, 1, 7, 9, 25, 15, 7, 11, 17, 21, 23, 27, 5
Offset: 1
The first pairs [x1(n), y1(n)] of the fundamental positive solutions of this first class are
(the prime A038873(n) is listed as first entry):
[2,[4, 3]], [7, [1, 2]], [17, [1, 3]],
[23, [3, 4]], [31, [1, 4]], [41, [3, 5]],
[47, [5, 6]], [71, [1, 6]], [73, [5, 7]],
[79, [7, 8]], [89, [3, 7]], [97, [1, 7]],
[103, [5, 8]], [113, [7, 9]], [127, [1, 8]],
[137, [5, 9]], [151, [7, 10]], [167, [11, 12]], [191, [3, 10]], [193, [7, 11]], [199, [1, 10]], [223, [13, 14]], [233, [3, 11]], [239, [7, 12]], [241, [1, 11]], [257, [9, 13]], [263, [5, 12]], ...
n=1: 4^2 - 2*3^2 = -2 = -A038873(1),
n=2: 1^2 - 2*2^2 = 1 - 8 = -7 = -A038873(2).
A255247
Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A001132(n), n>=1 (primes congruent to {1,7} mod 8).
Original entry on oeis.org
5, 9, 7, 13, 11, 9, 21, 13, 11, 19, 25, 17, 15, 29, 21, 19, 15, 31, 23, 37, 17, 35, 27, 41, 25, 33, 23, 21, 29, 37, 49, 23, 21, 41, 47, 39, 29, 37, 25, 23, 57, 35, 43, 33, 49, 55, 27, 59, 65, 33, 51, 43, 31, 29, 41, 49, 69, 55, 53, 29, 43, 59, 51, 41, 37, 35
Offset: 1
The first pairs [x1(n), y1(n)] of the fundamental positive solutions of this first class are (the prime A001132(n) is listed as first entry):
[7, [5, 4]], [17, [9, 7]], [23, [7, 6]],
[31, [13, 10]], [41, [11, 9]], [47, [9, 8]],
[71, [21, 16]], [73, [13, 11]], [79, [11, 10]],
[89, [19, 15]], [97, [25, 19]], [103, [17, 14]],
[113, [15, 13]], [127, [29, 22]],
[137, [21, 17]], [151, [19, 16]],
[167, [15, 14]], [191, [31, 24]],
[193, [23, 19]], [199, [37, 28]],
[223, [17, 16]], [233, [35, 27]],
[239, [27, 22]], [241, [41, 31]], ...
n = 1: 5^2 - 2*4^2 = 25 - 32 = -7 = -A001132(1).
a(3) = -(3*3 - 4*4) = 16 - 9 = 7.
A255248
Fundamental positive solution y = y2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A001132(n), n>=1 (primes congruent to {1,7} mod 8).
Original entry on oeis.org
4, 7, 6, 10, 9, 8, 16, 11, 10, 15, 19, 14, 13, 22, 17, 16, 14, 24, 19, 28, 16, 27, 22, 31, 21, 26, 20, 19, 24, 29, 37, 21, 20, 32, 36, 31, 25, 30, 23, 22, 43, 29, 34, 28, 38, 42, 25, 45, 49, 29, 40, 35, 28, 27, 34, 39, 52, 43, 42, 28, 36, 46, 41, 35, 33, 32
Offset: 1
See A255247.
a(4) = -(2*1 - 3*4) = 12 - 2 = 10.
n=4: 13^2 - 2*10^2 = 169 - 200 = -31 = -A001132(4).
Showing 1-5 of 5 results.
Comments