cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A255232 One half of the fundamental positive solution y = y1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A007522(n), n >= 1 (primes congruent to 7 mod 8).

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 5, 5, 7, 6, 6, 7, 7, 9, 7, 7, 8, 10, 8, 9, 8, 8, 9, 11, 10, 9, 10, 13, 11, 10, 13, 14, 12, 11, 13, 11, 11, 12, 13, 12, 14, 13, 16, 12, 12, 17, 13, 14, 13, 16, 13, 18, 14, 16, 15, 14, 17, 14, 15, 14, 14, 14, 17, 16, 19, 16, 17, 16, 20, 21, 17, 16, 17, 16, 16
Offset: 1

Views

Author

Wolfdieter Lang, Feb 18 2015

Keywords

Comments

For the corresponding term x1(n) see A254938(n).
See A254938 also for the Nagell reference.
The least positive y solutions (that is those of the first class) for the primes +1 and -1 (mod 8) together (including prime 2) are given in A255246.

Examples

			See A254938.
n = 3: 1^2 - 2*(2*2)^2 = 1 - 32  = -31 = -A007522(3).
		

Crossrefs

Cf. A007522 (primes == 7 mod 8), A254938 (corresponding x1 values), A255233 (x2 values), A255234 (y2 values), A255246, A254935.

Programs

  • PARI
    apply( {A255232(n, p=A007522(n))=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1][2]\2}, [1..88]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025

Formula

A254938(n)^2 - 2*(2*a(n))^2 = -A007522(n) gives the smallest positive (proper) solution of this (generalized) Pell equation.

Extensions

More terms from Colin Barker, Feb 23 2015
Double-checked and extended by M. F. Hasler, May 22 2025

A254934 Fundamental positive solution x = x1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A007519(n), n>=1 (primes congruent to 1 mod 8).

Original entry on oeis.org

1, 3, 5, 3, 1, 7, 5, 7, 3, 1, 9, 13, 5, 1, 15, 7, 13, 17, 1, 11, 19, 3, 1, 17, 11, 21, 9, 7, 11, 17, 21, 5, 1, 23, 11, 27, 9, 7, 5, 3, 19, 11, 23, 27, 7, 31, 1, 13, 25, 19, 33, 7, 5, 21, 31, 25, 9, 29, 5, 15, 27, 13, 31, 11, 7, 17, 3, 37, 41, 31, 19, 25, 7, 35, 5, 17, 33, 13, 21, 19, 45, 25, 3
Offset: 1

Views

Author

Wolfdieter Lang, Feb 18 2015

Keywords

Comments

For the corresponding term y1(n) see A254935(n).
For the positive fundamental proper (sometimes called primitive) solutions x2(n) and y2(n) of the second class of this (generalized) Pell equation see A254936(n) and A254937(n).
The present solutions of this first class are the smallest positive ones.
See the Nagell reference Theorem 111, p. 210, for the proof of the existence of solutions (the discriminant of this binary quadratic form is +8 hence it is an indefinite form with an infinitude of solutions if there exists at least one).
See the Nagell reference Theorem 110, p. 208, for the proof that there are only two classes of solutions for this Pell equation, because the equation is solvable and each prime from A007519 does not divide 4.
The present fundamental solutions are found according to the Nagell reference Theorem 108a, p. 206-207, adapted to the case at hand, by scanning the following two inequalities for solutions x1(n) = 2*X1(n) + 1 and y1(n) = 2*Y1(n) + 1 (because even y is out in this Pell equation). The intervals to be scanned are identical for X1(n) and Y1(n), namely [0, floor((sqrt(p(n) - 1)/2)] with p(n) = A007519(n).
The general positive proper solutions are for both classes obtained by applying positive powers of the matrix M = [[3,4],[2,3]] on the fundamental positive column vectors (x(n),y(n))^T. The n-th power M^n = S(n-1, 6)*M - S(n-2, 6) 1_2 , where 1_2 is the 2 X 2 identity matrix and S(n, 6), with S(-2, 6) = -1 and S(-1, 6) = 0 is the Chebyshev S-polynomial evaluated at x = 6, given in A001109(n).
The least positive x solutions (that is the ones of the first class) for the primes +1 and -1 (mod 8) together (including prime 2) are given in A255235.

Examples

			The first pairs [x1(n), y1(n)] of the fundamental positive solutions of this first class are (the prime A007519(n) is listed as first entry):
[17, [1, 3]], [41, [3, 5]], [73, [5, 7]],
[89, [3, 7]], [97, [1, 7]], [113, [7, 9]],
[137, [5, 9]], [193, [7, 11]], [233, [3, 11]],
[241, [1, 11]], [257, [9, 13]], [281, [13, 15]],
[313, [5, 13]], [337, [1, 13]], [353, [15, 17]],
[401, [7, 15]], [409, [13, 17]], [433, [17, 19]],
[449, [1, 15]], [457, [11, 17]], [521, [19, 21]],
[569, [3, 17]], [577, [1, 17]], [593, [17, 21]],
[601, [11, 19]], [617, [21, 23]], [641, [9, 19]],
[673, [7, 19]], [761, [11, 21]], [769, [17, 23]],
...
n=1: 1^2 - 2*3^2 = 1 - 18 = -17, ...
		

References

  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.

Crossrefs

Cf. A007519 (primes == 1 mod 8), A005123 (8k+1 is prime).
Cf. A254935 (corresponding y1 values), A254936 (x2 values), A254937 (y2 values), A254938, A255232, A255235, A254760.

Programs

  • PARI
    apply( {A254934(n, p=A007519(n))=Set(abs(qfbsolve(Qfb(-1,0,2), p,1)))[1][1]}, [1..77]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025

Formula

a(n)^2 - 2*A254935(n)^2 = -A007519(n), n >=1, gives the smallest positive (proper) solution of this (generalized) Pell equation.

Extensions

More terms from M. F. Hasler, May 22 2025

A254937 Fundamental positive solution y = y2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A007519(n), n>=1 (primes congruent to 1 mod 8).

Original entry on oeis.org

7, 9, 11, 15, 19, 13, 17, 19, 27, 31, 21, 19, 29, 37, 21, 31, 25, 23, 43, 29, 25, 45, 49, 29, 35, 27, 39, 43, 41, 35, 33, 53, 61, 35, 47, 33, 51, 55, 59, 63, 43, 53, 41, 39, 61, 37, 73, 55, 43, 49, 39, 67, 71, 51, 43, 49, 69, 47, 77, 63, 51, 67, 49, 71, 79, 65, 87, 49, 47, 55, 67, 61, 85, 53
Offset: 1

Views

Author

Wolfdieter Lang, Feb 18 2015

Keywords

Comments

The corresponding positive fundamental solution x2(n) of this second class solutions is given in A254936(n).
See the comments and the Nagell reference in A254934.

Examples

			n = 2: 11^2 - 2*9^2 = 121 - 162 = -41.
a(2) = -(2*3 - 3*5) = 9.
See also A254936.
		

Crossrefs

Cf. A007519 (primes == 1 mod 8), A254936 (x2-values), A254934 (first (class) solution x1), A254935 (y1), A255234 (y2/2 for primes == 7 mod 8), A255248, A254760.

Programs

  • PARI
    apply( {A254937(n, p=A007519(n))=n=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1]*[-2, 3]~}, [1..77]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025

Formula

A254936(n)^2 - 2*a(n)^2 = -A007519(n) gives the second smallest positive (proper) solution of this (generalized) Pell equation.
a(n) = -(2*A254934(n) - 3*A254935(n)), n >= 1.

Extensions

More terms from M. F. Hasler, May 22 2025

A254936 Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A007519(n), n >= 1 (primes congruent to 1 mod 8).

Original entry on oeis.org

9, 11, 13, 19, 25, 15, 21, 23, 35, 41, 25, 21, 37, 49, 23, 39, 29, 25, 57, 35, 27, 59, 65, 33, 43, 29, 49, 55, 51, 41, 37, 69, 81, 39, 59, 35, 65, 71, 77, 83, 51, 67, 47, 43, 79, 39, 97, 69, 49, 59, 41, 87, 93, 61, 47, 57, 89, 53, 101, 79, 59, 85, 55, 91, 103, 81, 115, 53, 49, 63, 83, 73, 111, 59
Offset: 1

Views

Author

Wolfdieter Lang, Feb 18 2015

Keywords

Comments

The corresponding term y = y2(n) of this fundamental solution of the second class of the (generalized) Pell equation x^2 - 2*y^2 = -A007519(n) = -(1 + 8*A005123(n)) is given in A254937(n).
For comments and the Nagell reference see A254934.

Examples

			The first pairs [x2(n), y2(n)] of the fundamental positive solutions of this second class are (the prime A007519(n) appears as first entry):
  [17, [9, 7]], [41, [11, 9]], [73, [13, 11]],
  [89, [19, 15]], [97, [25, 19]], [113, [15, 13]],
  [137, [21, 17]], [193, [23, 19]], [233, [35, 27]],
  [241, [41, 31]], [257, [25, 21]], [281, [21, 19]],
  [313, [37, 29]], [337, [49, 37]], [353, [23, 21]],
  [401, [39, 31]], [409, [29, 25]], [433, [25, 23]],
  [449, [57, 43]], [457, [35, 29]], [521, [27, 25]],
  [569, [59, 45]], [577, [65, 49]], [593, [33, 29]],
  [601, [43, 35]], [617, [29, 27]], [641, [49, 39]], ...
a(4) = -(3*3 - 4*7) = 28 - 9 = 19.
		

Crossrefs

Cf. A007519 (primes == 1 mod 8), A005123 (8k+1 is prime).
Cf. A254937 (corresponding y2-values), A254934 (x1 values), A254935 (y1 values), A255233 (same for primes == 7 mod 8), A255247.

Programs

  • PARI
    apply( {A254936(n, p=A007519(n))=n=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1]*[-3,4]~}, [1..77]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025

Formula

a(n)^2 - 2*A254937(n)^2 = -A007519(n) gives the second smallest positive (proper) solution of this (generalized) Pell equation.
a(n) = -(3*A254934(n) - 4*A254935(n)), n >= 1.

Extensions

More terms from M. F. Hasler, May 22 2025

A255235 Fundamental positive solution x = x1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A038873(n), n>=1 (primes congruent to {1,2,7} mod 8).

Original entry on oeis.org

4, 1, 1, 3, 1, 3, 5, 1, 5, 7, 3, 1, 5, 7, 1, 5, 7, 11, 3, 7, 1, 13, 3, 7, 1, 9, 5, 11, 13, 9, 5, 1, 15, 17, 5, 3, 7, 13, 9, 17, 19, 1, 11, 7, 13, 5, 3, 19, 3, 1, 17, 7, 11, 19, 21, 13, 9, 1, 7, 9, 25, 15, 7, 11, 17, 21, 23, 27, 5
Offset: 1

Views

Author

Wolfdieter Lang, Feb 25 2015

Keywords

Comments

For the corresponding term y1(n) see A255246(n).
The present solutions of this first class are the smallest positive ones.
For the positive fundamental proper (sometimes called primitive) solutions x2 and y2 of the second class of this (generalized) Pell equation see A255247 and A255248. There is no second class for prime 2.
For the first class solutions of this Pell equation with primes 1 (mod 8) see A254934 and A254935. For those with primes 7 (mod 8) see A254938 and 2*A255232. For the derivation of these solutions see A254934 and A254938, also for the Nagell reference.

Examples

			The first pairs [x1(n), y1(n)] of the fundamental positive solutions of this first class are
  (the prime A038873(n) is listed as first entry):
  [2,[4, 3]], [7, [1, 2]], [17, [1, 3]],
  [23, [3, 4]], [31, [1, 4]], [41, [3, 5]],
  [47, [5, 6]], [71, [1, 6]], [73, [5, 7]],
  [79, [7, 8]], [89, [3, 7]], [97, [1, 7]],
  [103, [5, 8]], [113, [7, 9]], [127, [1, 8]],
  [137, [5, 9]], [151, [7, 10]], [167, [11, 12]], [191, [3, 10]], [193, [7, 11]], [199, [1, 10]], [223, [13, 14]], [233, [3, 11]], [239, [7, 12]], [241, [1, 11]], [257, [9, 13]], [263, [5, 12]], ...
n=1: 4^2 - 2*3^2 = -2 = -A038873(1),
n=2: 1^2 - 2*2^2 = 1 - 8 = -7 = -A038873(2).
		

Crossrefs

Formula

a(n)^2 - A255246(n)^2 = - A038873(n), n >= 1, gives the smallest positive (proper) solution of this (generalized) Pell equation.

Extensions

More terms from Colin Barker, Feb 26 2015

A255246 Fundamental positive solution y = y1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A038873(n), n>=1 (primes congruent to {1,2,7} mod 8).

Original entry on oeis.org

3, 2, 3, 4, 4, 5, 6, 6, 7, 8, 7, 7, 8, 9, 8, 9, 10, 12, 10, 11, 10, 14, 11, 12, 11, 13, 12, 14, 15, 14, 13, 13, 17, 18, 14, 14, 15, 17, 16, 19, 20, 15, 17, 16, 18, 16, 16, 21, 17, 17, 21, 18, 19, 22, 23, 20, 19, 18, 19, 20, 26, 22, 20, 21, 23, 25, 26, 28, 21
Offset: 1

Views

Author

Wolfdieter Lang, Feb 25 2015

Keywords

Comments

For the corresponding term x1(n) see A255235(n).
For the primes 1 (mod 8) see A154935, and for the primes 7 (mod 8) see 2*A255232.
See A254934 and A254938 also for the derivation based on the Nagell reference given there.

Examples

			See A255235.
n = 1: 4^2 - 2*3^2 = -2 = -A038873(1),
n = 3: 1^2 - 2*3^2 = 1 - 18 = -17 = -A038873(3).
		

Crossrefs

Formula

A255235(n)^2 - 2*a(n)^2 = -A038873(n) gives the smallest positive (proper) solution of this (generalized) Pell equation.

Extensions

More terms from Colin Barker, Feb 26 2015
Showing 1-6 of 6 results.