A254938
Fundamental positive solution x = x1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A007522(n), n >= 1 (primes congruent to 7 mod 8).
Original entry on oeis.org
1, 3, 1, 5, 1, 7, 5, 1, 7, 11, 3, 1, 13, 7, 5, 11, 9, 17, 5, 3, 9, 19, 7, 13, 5, 3, 7, 19, 13, 1, 9, 25, 15, 7, 23, 27, 17, 9, 21, 7, 1, 13, 19, 11, 23, 17, 31, 7, 1, 33, 11, 17, 7, 27, 5, 35, 13, 25, 19, 11, 29, 9, 17, 5, 3, 1, 27, 21, 35, 17, 23, 15, 37, 41, 21, 13, 19, 7, 3, 23, 15, 33, 13
Offset: 1
The first pairs [x1(n), y1(n)] of the fundamental positive solutions of this first class are (the prime A007522(n) is listed as first entry):
[7, [1, 2]], [23, [3, 4]], [31, [1, 4]],
[47, [5, 6]], [71, [1, 6]], [79, [7, 8]],
[103, [5, 8]], [127, [1, 8]], [151, [7, 10]],
[167, [11, 12]], [191, [3, 10]], [199, [1, 10]], [223, [13, 14]], [239, [7, 12]], [263, [5, 12]], [271, [11, 14]], [311, [9, 14]], [359, [17, 18]], [367, [5, 14]], [383, [3, 14]], [431, [9, 16]], [439, [19, 20]], [463, [7, 16]], [479, [13, 18]], [487, [5, 16]], [503, [3, 16]], ...
n=1: 1^2 - 2*(2*1)^2 = 1 - 8 = -7 = -A007522(1), ...
- T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.
-
apply( {A254938(n, p=A007522(n))=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1][1]}, [1..88]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025
A255232
One half of the fundamental positive solution y = y1(n) of the first class of the Pell equation x^2 - 2*y^2 = -A007522(n), n >= 1 (primes congruent to 7 mod 8).
Original entry on oeis.org
1, 2, 2, 3, 3, 4, 4, 4, 5, 6, 5, 5, 7, 6, 6, 7, 7, 9, 7, 7, 8, 10, 8, 9, 8, 8, 9, 11, 10, 9, 10, 13, 11, 10, 13, 14, 12, 11, 13, 11, 11, 12, 13, 12, 14, 13, 16, 12, 12, 17, 13, 14, 13, 16, 13, 18, 14, 16, 15, 14, 17, 14, 15, 14, 14, 14, 17, 16, 19, 16, 17, 16, 20, 21, 17, 16, 17, 16, 16
Offset: 1
See A254938.
n = 3: 1^2 - 2*(2*2)^2 = 1 - 32 = -31 = -A007522(3).
-
apply( {A255232(n, p=A007522(n))=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1][2]\2}, [1..88]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025
A254936
Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A007519(n), n >= 1 (primes congruent to 1 mod 8).
Original entry on oeis.org
9, 11, 13, 19, 25, 15, 21, 23, 35, 41, 25, 21, 37, 49, 23, 39, 29, 25, 57, 35, 27, 59, 65, 33, 43, 29, 49, 55, 51, 41, 37, 69, 81, 39, 59, 35, 65, 71, 77, 83, 51, 67, 47, 43, 79, 39, 97, 69, 49, 59, 41, 87, 93, 61, 47, 57, 89, 53, 101, 79, 59, 85, 55, 91, 103, 81, 115, 53, 49, 63, 83, 73, 111, 59
Offset: 1
The first pairs [x2(n), y2(n)] of the fundamental positive solutions of this second class are (the prime A007519(n) appears as first entry):
[17, [9, 7]], [41, [11, 9]], [73, [13, 11]],
[89, [19, 15]], [97, [25, 19]], [113, [15, 13]],
[137, [21, 17]], [193, [23, 19]], [233, [35, 27]],
[241, [41, 31]], [257, [25, 21]], [281, [21, 19]],
[313, [37, 29]], [337, [49, 37]], [353, [23, 21]],
[401, [39, 31]], [409, [29, 25]], [433, [25, 23]],
[449, [57, 43]], [457, [35, 29]], [521, [27, 25]],
[569, [59, 45]], [577, [65, 49]], [593, [33, 29]],
[601, [43, 35]], [617, [29, 27]], [641, [49, 39]], ...
a(4) = -(3*3 - 4*7) = 28 - 9 = 19.
-
apply( {A254936(n, p=A007519(n))=n=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1]*[-3,4]~}, [1..77]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025
A255234
One half of the fundamental positive solution y = y2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A007522(n), n>=1 (primes congruent to 7 mod 8).
Original entry on oeis.org
2, 3, 5, 4, 8, 5, 7, 11, 8, 7, 12, 14, 8, 11, 13, 10, 12, 10, 16, 18, 15, 11, 17, 14, 19, 21, 20, 14, 17, 26, 21, 14, 18, 23, 16, 15, 19, 24, 18, 26, 32, 23, 20, 25, 19, 22, 17, 29, 35, 18, 28, 25, 32, 21, 34, 19, 29, 23, 26, 31, 22, 33, 28, 37, 39, 41, 24, 27, 22, 31, 28, 33, 23, 22, 30
Offset: 1
n = 2: 7^2 - 2*(2*3)^2 = 49 - 72 = -23 = - A007522(2).
a(3) = -(1 - 3*2) = 5.
See also A255233.
-
apply( {A255234(n, p=A007522(n))=Set(abs(qfbsolve(Qfb(-1, 0, 2), p, 1)))[1]*[-1,3/2]~}, [1..88]) \\ The 2nd optional arg allows to directly specify the prime. - M. F. Hasler, May 22 2025
A255236
All positive solutions x of the second class of the Pell equation x^2 - 2*y^2 = -7.
Original entry on oeis.org
5, 31, 181, 1055, 6149, 35839, 208885, 1217471, 7095941, 41358175, 241053109, 1404960479, 8188709765, 47727298111, 278175078901, 1621323175295, 9449763972869, 55077260661919, 321013799998645, 1871005539329951, 10905019435981061, 63559111076556415
Offset: 0
n = 2: 181^2 - 2*(2*64)^2 = -7; (4*64)^2 - 2*181^2 = 14.
n = 2: 2*53 + 75 = 181. - _Wolfdieter Lang_, Mar 19 2015
-
I:=[5,31]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2015
-
CoefficientList[Series[(5 + x) / (1 - 6 x + x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
-
Vec((5 + x)/(1 - 6*x + x^2) + O(x^30)) \\ Michel Marcus, Mar 20 2015
A255247
Fundamental positive solution x = x2(n) of the second class of the Pell equation x^2 - 2*y^2 = -A001132(n), n>=1 (primes congruent to {1,7} mod 8).
Original entry on oeis.org
5, 9, 7, 13, 11, 9, 21, 13, 11, 19, 25, 17, 15, 29, 21, 19, 15, 31, 23, 37, 17, 35, 27, 41, 25, 33, 23, 21, 29, 37, 49, 23, 21, 41, 47, 39, 29, 37, 25, 23, 57, 35, 43, 33, 49, 55, 27, 59, 65, 33, 51, 43, 31, 29, 41, 49, 69, 55, 53, 29, 43, 59, 51, 41, 37, 35
Offset: 1
The first pairs [x1(n), y1(n)] of the fundamental positive solutions of this first class are (the prime A001132(n) is listed as first entry):
[7, [5, 4]], [17, [9, 7]], [23, [7, 6]],
[31, [13, 10]], [41, [11, 9]], [47, [9, 8]],
[71, [21, 16]], [73, [13, 11]], [79, [11, 10]],
[89, [19, 15]], [97, [25, 19]], [103, [17, 14]],
[113, [15, 13]], [127, [29, 22]],
[137, [21, 17]], [151, [19, 16]],
[167, [15, 14]], [191, [31, 24]],
[193, [23, 19]], [199, [37, 28]],
[223, [17, 16]], [233, [35, 27]],
[239, [27, 22]], [241, [41, 31]], ...
n = 1: 5^2 - 2*4^2 = 25 - 32 = -7 = -A001132(1).
a(3) = -(3*3 - 4*4) = 16 - 9 = 7.
Showing 1-6 of 6 results.
Comments