A254960 Zeroless numbers n with digits d_1, d_2, ... d_k such that d_1^3 + ... + d_k^3 is a cube.
1, 2, 3, 4, 5, 6, 7, 8, 9, 168, 186, 345, 354, 435, 453, 534, 543, 618, 681, 816, 861, 1156, 1165, 1516, 1561, 1615, 1651, 5116, 5161, 5611, 6115, 6151, 6511, 11233, 11323, 11332, 12133, 12313, 12331, 13123, 13132, 13213, 13231, 13312, 13321, 13369, 13396, 13458, 13485, 13548, 13584, 13639, 13693, 13845, 13854
Offset: 1
Links
- Jonathan Schwartz, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[14000],DigitCount[#,10,0]==0&&IntegerQ[Surd[Total[ IntegerDigits[ #]^3],3]]&] (* Harvey P. Dale, Sep 23 2019 *)
-
PARI
for(n=1,10^3,d=digits(n);if(vecsort(d,,8)[1],s=0;for(i=1,#d,s+=d[i]^3);if(ispower(s,3),print1(n,", "))))
Comments