cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A254979 Decimal expansion of the mean Euclidean distance from a point in a unit 4D cube to a given vertex of the cube (named B_4(1) in Bailey's paper).

Original entry on oeis.org

1, 1, 2, 1, 8, 9, 9, 6, 1, 8, 7, 1, 5, 8, 6, 0, 9, 7, 7, 3, 5, 1, 6, 1, 5, 1, 7, 5, 5, 6, 7, 5, 4, 2, 7, 0, 9, 2, 0, 0, 8, 0, 7, 9, 5, 6, 4, 3, 9, 5, 4, 5, 8, 3, 0, 8, 3, 6, 7, 9, 2, 4, 6, 6, 9, 1, 6, 4, 0, 3, 5, 4, 8, 6, 0, 6, 9, 1, 5, 3, 4, 9, 0, 2, 4, 6, 7, 3, 1, 4, 5, 5, 7, 8, 6, 3, 7, 6, 4, 4, 9, 7, 6, 3, 4
Offset: 1

Views

Author

Jean-François Alcover, Feb 11 2015

Keywords

Comments

Also, decimal expansion of twice the expected distance from a randomly selected point in the unit 4D cube to the center. - Amiram Eldar, Jun 04 2023

Examples

			1.12189961871586097735161517556754270920080795643954583...
		

Crossrefs

Analogous constants: A244921 (square), A130590 (cube).

Programs

  • Mathematica
    Ti2[x_] := (I/2)*(PolyLog[2, -I*x] - PolyLog[2, I*x]); B4[1] = 2/5 - Catalan/10 + (3/10)*Ti2[3 - 2*Sqrt[2]] + Log[3] - (7*Sqrt[2]/10)*ArcTan[1/Sqrt[8]] // Re; RealDigits[B4[1], 10, 105] // First
    N[Integrate[1/u^2 - Pi^2*Erf[u]^4/(16*u^6), {u, 0, Infinity}]/Sqrt[Pi], 50] (* Vaclav Kotesovec, Aug 13 2019 *)
  • Python
    from mpmath import *
    mp.dps=106
    x=3 - 2*sqrt(2)
    Ti2x=(j/2)*(polylog(2, -j*x) - polylog(2, j*x))
    C = 2/5 - catalan/10 + (3/10)*Ti2x + log(3) - (7*sqrt(2)/10)*atan(1/sqrt(8))
    print([int(n) for n in str(C.real).replace('.', '')]) # Indranil Ghosh, Jul 04 2017

Formula

Equals B_4(1) = 2/5 - Catalan/10 + (3/10)*Ti_2(3-2*sqrt(2)) + log(3) - (7*sqrt(2)/10) * arctan(1/sqrt(8)), where Ti_2(x) = (i/2)*(polylog(2, -i*x) - polylog(2, i*x)) (Ti_2 is the inverse tangent integral function).

Extensions

Name corrected by Amiram Eldar, Jun 04 2023

A254980 Decimal expansion of the mean reciprocal Euclidean distance from a point in a unit 4D cube to a given vertex of the cube (named B_4(-1) in Bailey's paper).

Original entry on oeis.org

9, 6, 7, 4, 1, 2, 0, 2, 1, 2, 4, 1, 1, 6, 5, 8, 9, 8, 6, 6, 1, 8, 3, 6, 4, 3, 8, 1, 7, 8, 1, 5, 8, 3, 9, 0, 1, 3, 5, 9, 3, 7, 0, 0, 9, 2, 9, 9, 9, 6, 0, 7, 0, 7, 2, 7, 4, 8, 2, 5, 7, 9, 2, 6, 6, 9, 5, 2, 4, 8, 4, 1, 9, 6, 7, 2, 3, 8, 4, 0, 5, 6, 6, 7, 2, 3, 1, 0, 2, 5, 3, 2, 3, 4, 2, 7, 7, 0, 0, 6, 6, 6, 6, 9
Offset: 0

Views

Author

Jean-François Alcover, Feb 11 2015

Keywords

Examples

			0.96741202124116589866183643817815839013593700929996...
		

Crossrefs

Programs

  • Mathematica
    Ti2[x_] := (I/2)*(PolyLog[2, -I*x] - PolyLog[2, I*x]); B4[-1] = 2*Log[3] - (2/3) * Catalan + 2*Ti2[3 - 2*Sqrt[2]] - Sqrt[8]*ArcTan[1/Sqrt[8]] // Re; RealDigits[ B4[-1], 10, 104] // First
  • Python
    from mpmath import *
    mp.dps=105
    x=3 - 2*sqrt(2)
    Ti2x=(j/2)*(polylog(2, -j*x) - polylog(2, j*x))
    C = 2*log(3) - (2/3)*catalan + 2*Ti2x - sqrt(8) * atan(1/sqrt(8))
    print([int(n) for n in list(str(C.real)[2:-1])]) # Indranil Ghosh, Jul 03 2017

Formula

B_4(-1) = 2*log(3) - (2/3)*Catalan + 2*Ti_2(3-2*sqrt(2)) - sqrt(8) * arctan( 1/sqrt(8) ), where Ti_2(x) = (i/2)*(polylog(2, -i*x) - polylog(2, i*x)) (Ti_2 is the inverse tangent integral function).

Extensions

Name corrected by Amiram Eldar, Jun 04 2023
Showing 1-2 of 2 results.