A130590 Decimal expansion of the mean Euclidean distance from a point in the unit 3D cube to a given vertex of the cube.
9, 6, 0, 5, 9, 1, 9, 5, 6, 4, 5, 5, 0, 5, 2, 9, 5, 9, 4, 2, 5, 1, 0, 7, 9, 5, 1, 3, 9, 3, 8, 0, 6, 3, 6, 0, 2, 4, 0, 9, 7, 6, 9, 0, 7, 5, 4, 5, 7, 2, 3, 9, 8, 7, 6, 9, 0, 8, 9, 8, 5, 1, 5, 3, 1, 0, 3, 8, 7, 6, 6, 3, 3, 4, 0, 1, 6, 3, 2, 8, 9, 0, 3, 1, 2, 2, 7, 9, 3, 5, 6, 9, 1, 7, 7, 4, 8, 2, 4, 5, 3, 1, 2, 1, 6
Offset: 0
Examples
0.960591956455052959425107951...
Links
- D. H. Bailey, J. M. Borwein and R. E. Crandall, Box Integrals, J. Comp. Appl. Math., Vol. 206, No. 1 (2007), pp. 196-208.
- D. H. Bailey, J. M. Borwein, and R. E. Crandall, Advances in the theory of box integrals, Math. Comp. 79 (271) (2010) 1839-1866, Table 2. [From _R. J. Mathar_, Oct 13 2010]
- Eric Weisstein's World of Mathematics, Box Integral.
Crossrefs
Programs
-
Maple
evalf( sqrt(3)/4+log(2+sqrt(3))/2-Pi/24);
-
Mathematica
RealDigits[Sqrt[3]/4 + Log[2+Sqrt[3]]/2 - Pi/24, 10, 120][[1]] (* Amiram Eldar, Jun 04 2023 *)
Formula
Equals 2 * A135691. - Amiram Eldar, Jun 04 2023
Extensions
Name corrected by Amiram Eldar, Jun 04 2023