cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A135691 Decimal expansion of (6*sqrt(3) + 12*log(2+sqrt(3)) - Pi)/48.

Original entry on oeis.org

4, 8, 0, 2, 9, 5, 9, 7, 8, 2, 2, 7, 5, 2, 6, 4, 7, 9, 7, 1, 2, 5, 5, 3, 9, 7, 5, 6, 9, 6, 9, 0, 3, 1, 8, 0, 1, 2, 0, 4, 8, 8, 4, 5, 3, 7, 7, 2, 8, 6, 1, 9, 9, 3, 8, 4, 5, 4, 4, 9, 2, 5, 7, 6, 5, 5, 1, 9, 3, 8, 3, 1, 6, 7, 0, 0, 8, 1, 6, 4, 4, 5, 1, 5, 6, 1, 3, 9, 6, 7, 8, 4, 5, 8, 8, 7, 4, 1
Offset: 0

Views

Author

N. J. A. Sloane, Mar 03 2008

Keywords

Comments

Decimal expansion of the expected distance from a randomly selected point in the unit cube to its center.

Examples

			0.4802959782275264797125539756969...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 8.1, p. 479.

Crossrefs

Cf. A130590.

Programs

  • Mathematica
    RealDigits[(6Sqrt[3]+12Log[2+Sqrt[3]]-Pi)/48,10,120][[1]] (* Harvey P. Dale, Jan 30 2013 *)
  • PARI
    (6*sqrt(3)+12*log(2+sqrt(3))-Pi)/48 \\ Stefano Spezia, Dec 21 2024

Formula

Equals A130590 / 2. - Amiram Eldar, Jun 04 2023

A254979 Decimal expansion of the mean Euclidean distance from a point in a unit 4D cube to a given vertex of the cube (named B_4(1) in Bailey's paper).

Original entry on oeis.org

1, 1, 2, 1, 8, 9, 9, 6, 1, 8, 7, 1, 5, 8, 6, 0, 9, 7, 7, 3, 5, 1, 6, 1, 5, 1, 7, 5, 5, 6, 7, 5, 4, 2, 7, 0, 9, 2, 0, 0, 8, 0, 7, 9, 5, 6, 4, 3, 9, 5, 4, 5, 8, 3, 0, 8, 3, 6, 7, 9, 2, 4, 6, 6, 9, 1, 6, 4, 0, 3, 5, 4, 8, 6, 0, 6, 9, 1, 5, 3, 4, 9, 0, 2, 4, 6, 7, 3, 1, 4, 5, 5, 7, 8, 6, 3, 7, 6, 4, 4, 9, 7, 6, 3, 4
Offset: 1

Views

Author

Jean-François Alcover, Feb 11 2015

Keywords

Comments

Also, decimal expansion of twice the expected distance from a randomly selected point in the unit 4D cube to the center. - Amiram Eldar, Jun 04 2023

Examples

			1.12189961871586097735161517556754270920080795643954583...
		

Crossrefs

Analogous constants: A244921 (square), A130590 (cube).

Programs

  • Mathematica
    Ti2[x_] := (I/2)*(PolyLog[2, -I*x] - PolyLog[2, I*x]); B4[1] = 2/5 - Catalan/10 + (3/10)*Ti2[3 - 2*Sqrt[2]] + Log[3] - (7*Sqrt[2]/10)*ArcTan[1/Sqrt[8]] // Re; RealDigits[B4[1], 10, 105] // First
    N[Integrate[1/u^2 - Pi^2*Erf[u]^4/(16*u^6), {u, 0, Infinity}]/Sqrt[Pi], 50] (* Vaclav Kotesovec, Aug 13 2019 *)
  • Python
    from mpmath import *
    mp.dps=106
    x=3 - 2*sqrt(2)
    Ti2x=(j/2)*(polylog(2, -j*x) - polylog(2, j*x))
    C = 2/5 - catalan/10 + (3/10)*Ti2x + log(3) - (7*sqrt(2)/10)*atan(1/sqrt(8))
    print([int(n) for n in str(C.real).replace('.', '')]) # Indranil Ghosh, Jul 04 2017

Formula

Equals B_4(1) = 2/5 - Catalan/10 + (3/10)*Ti_2(3-2*sqrt(2)) + log(3) - (7*sqrt(2)/10) * arctan(1/sqrt(8)), where Ti_2(x) = (i/2)*(polylog(2, -i*x) - polylog(2, i*x)) (Ti_2 is the inverse tangent integral function).

Extensions

Name corrected by Amiram Eldar, Jun 04 2023

A254968 Decimal expansion of the mean reciprocal Euclidean distance from a point in a unit cube to a given vertex of the cube (named B_3(-1) in Bailey's paper).

Original entry on oeis.org

1, 1, 9, 0, 0, 3, 8, 6, 8, 1, 9, 8, 9, 7, 7, 6, 7, 5, 3, 3, 2, 1, 9, 0, 8, 6, 7, 5, 1, 4, 2, 0, 7, 6, 9, 4, 4, 9, 9, 1, 1, 8, 0, 6, 0, 7, 3, 5, 7, 4, 9, 8, 2, 6, 4, 4, 0, 8, 9, 7, 2, 2, 3, 7, 3, 0, 3, 7, 3, 6, 1, 7, 6, 5, 5, 3, 1, 1, 3, 7, 1, 4, 4, 5, 4, 3, 1, 9, 8, 1, 3, 8, 3, 9, 6, 2, 3, 4, 0, 8, 3, 3, 9, 1, 6
Offset: 1

Views

Author

Jean-François Alcover, Feb 11 2015

Keywords

Examples

			1.1900386819897767533219086751420769449911806073574982644...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(3/2)*Log[2 + Sqrt[3]] - Pi/4, 10, 105] // First

Formula

Equals B_3(-1) = (3/2)*log(2 + sqrt(3)) - Pi/4.
Equals log(7 + 4*sqrt(3)) - Pi/4 - arcsinh(1/sqrt(2)).

Extensions

Name corrected by Amiram Eldar, Jun 04 2023

A254980 Decimal expansion of the mean reciprocal Euclidean distance from a point in a unit 4D cube to a given vertex of the cube (named B_4(-1) in Bailey's paper).

Original entry on oeis.org

9, 6, 7, 4, 1, 2, 0, 2, 1, 2, 4, 1, 1, 6, 5, 8, 9, 8, 6, 6, 1, 8, 3, 6, 4, 3, 8, 1, 7, 8, 1, 5, 8, 3, 9, 0, 1, 3, 5, 9, 3, 7, 0, 0, 9, 2, 9, 9, 9, 6, 0, 7, 0, 7, 2, 7, 4, 8, 2, 5, 7, 9, 2, 6, 6, 9, 5, 2, 4, 8, 4, 1, 9, 6, 7, 2, 3, 8, 4, 0, 5, 6, 6, 7, 2, 3, 1, 0, 2, 5, 3, 2, 3, 4, 2, 7, 7, 0, 0, 6, 6, 6, 6, 9
Offset: 0

Views

Author

Jean-François Alcover, Feb 11 2015

Keywords

Examples

			0.96741202124116589866183643817815839013593700929996...
		

Crossrefs

Programs

  • Mathematica
    Ti2[x_] := (I/2)*(PolyLog[2, -I*x] - PolyLog[2, I*x]); B4[-1] = 2*Log[3] - (2/3) * Catalan + 2*Ti2[3 - 2*Sqrt[2]] - Sqrt[8]*ArcTan[1/Sqrt[8]] // Re; RealDigits[ B4[-1], 10, 104] // First
  • Python
    from mpmath import *
    mp.dps=105
    x=3 - 2*sqrt(2)
    Ti2x=(j/2)*(polylog(2, -j*x) - polylog(2, j*x))
    C = 2*log(3) - (2/3)*catalan + 2*Ti2x - sqrt(8) * atan(1/sqrt(8))
    print([int(n) for n in list(str(C.real)[2:-1])]) # Indranil Ghosh, Jul 03 2017

Formula

B_4(-1) = 2*log(3) - (2/3)*Catalan + 2*Ti_2(3-2*sqrt(2)) - sqrt(8) * arctan( 1/sqrt(8) ), where Ti_2(x) = (i/2)*(polylog(2, -i*x) - polylog(2, i*x)) (Ti_2 is the inverse tangent integral function).

Extensions

Name corrected by Amiram Eldar, Jun 04 2023

A355415 Decimal expansion of the average distance between the center of a unit cube to a point on its surface uniformly chosen by a random direction from the center.

Original entry on oeis.org

6, 1, 0, 6, 8, 7, 4, 0, 1, 9, 5, 1, 5, 8, 3, 8, 5, 6, 5, 3, 4, 6, 6, 7, 2, 2, 9, 6, 7, 3, 7, 1, 6, 6, 2, 8, 4, 6, 9, 1, 1, 5, 5, 2, 5, 8, 1, 9, 0, 7, 4, 6, 2, 7, 5, 8, 9, 9, 2, 9, 9, 4, 1, 0, 2, 5, 9, 6, 8, 1, 5, 7, 3, 6, 2, 8, 8, 6, 6, 4, 1, 3, 7, 2, 1, 4, 5, 0, 5, 5, 9, 6, 5, 7, 6, 6, 0, 8, 0, 8, 3, 3, 5, 7, 2
Offset: 0

Views

Author

Amiram Eldar, Jul 01 2022

Keywords

Comments

If the point is uniformly chosen at random on the surface, then the average is A097047.

Examples

			0.61068740195158385653466722967371662846911552581907...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(3/Pi)*Integrate[ArcCot[Sqrt[1 + x^2]]/Sqrt[1 + x^2], {x, 0, 1}], 101], 10, 100][[1]]
    (* or *)
    RealDigits[3 * ((Im[PolyLog[2, (3 - 2*Sqrt[2])*I]] - Catalan)/Pi - Log[17 - 12*Sqrt[2]]/8), 10, 100][[1]]

Formula

Equals (1/2) * Integral_{x=-1..1, y=-1..1} (1 + x^2 + y^2)^(-1) dx dy / Integral_{x=-1..1, y=-1..1} (1 + x^2 + y^2)^(-3/2) dx dy.
Equals (3/Pi) * Integral_{x=0..1} arccot(sqrt(1+x^2))/sqrt(1+x^2) dx.
Equals (6/Pi) * Integral_{x=0..Pi/4} log(sqrt(1+cos(x)^2)/cos(x)) dx.
Equals 3 * ((Im(Li_2((3-2*sqrt(2))*i)) - G)/Pi - log(17-12*sqrt(2))/8), where Li_2 is the dilogarithm function, i is the imaginary unit, and G is Catalan's constant (A006752).
Showing 1-5 of 5 results.