cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A130590 Decimal expansion of the mean Euclidean distance from a point in the unit 3D cube to a given vertex of the cube.

Original entry on oeis.org

9, 6, 0, 5, 9, 1, 9, 5, 6, 4, 5, 5, 0, 5, 2, 9, 5, 9, 4, 2, 5, 1, 0, 7, 9, 5, 1, 3, 9, 3, 8, 0, 6, 3, 6, 0, 2, 4, 0, 9, 7, 6, 9, 0, 7, 5, 4, 5, 7, 2, 3, 9, 8, 7, 6, 9, 0, 8, 9, 8, 5, 1, 5, 3, 1, 0, 3, 8, 7, 6, 6, 3, 3, 4, 0, 1, 6, 3, 2, 8, 9, 0, 3, 1, 2, 2, 7, 9, 3, 5, 6, 9, 1, 7, 7, 4, 8, 2, 4, 5, 3, 1, 2, 1, 6
Offset: 0

Views

Author

R. J. Mathar, Aug 10 2007

Keywords

Examples

			0.960591956455052959425107951...
		

Crossrefs

Analogous constants: A244921 (square), A254979 (4-cube).

Programs

  • Maple
    evalf( sqrt(3)/4+log(2+sqrt(3))/2-Pi/24);
  • Mathematica
    RealDigits[Sqrt[3]/4 + Log[2+Sqrt[3]]/2 - Pi/24, 10, 120][[1]] (* Amiram Eldar, Jun 04 2023 *)

Formula

Equals sqrt(3)/4 + log(2+sqrt(3))/2 - Pi/24 = A010527/2 + A065914/2 - A019691.
Equals 2 * A135691. - Amiram Eldar, Jun 04 2023

Extensions

Name corrected by Amiram Eldar, Jun 04 2023

A137209 Decimal expansion of (1/2)*sqrt(3/Pi).

Original entry on oeis.org

4, 8, 8, 6, 0, 2, 5, 1, 1, 9, 0, 2, 9, 1, 9, 9, 2, 1, 5, 8, 6, 3, 8, 4, 6, 2, 2, 8, 3, 8, 3, 4, 7, 0, 0, 4, 5, 7, 5, 8, 8, 5, 6, 0, 8, 1, 9, 4, 2, 2, 7, 7, 0, 2, 1, 3, 8, 2, 4, 3, 1, 5, 7, 4, 4, 5, 8, 4, 1, 0, 0, 0, 3, 6, 1, 6, 3, 6, 5, 3, 0, 4, 0, 5, 6, 1, 4, 8, 1, 8, 7, 0, 3, 9, 7, 0, 0, 4, 2, 4, 1, 5, 7, 6, 4
Offset: 0

Views

Author

Zak Seidov, Mar 05 2008

Keywords

Comments

Decimal expansion of the radius x (in units of cube edge length) of sphere with volume x (in units of cube volume).
Appears in the asymptotic expansions of A228484 and A006588. - Johannes W. Meijer, Aug 22 2013

Examples

			0.488602511902919921586384622
		

Crossrefs

Cf. A135691.

Programs

  • Mathematica
    RealDigits[1/2 Sqrt[3/Pi],10,120][[1]] (* Harvey P. Dale, Jul 11 2017 *)
  • PARI
    sqrt(3)/(2*sqrt(Pi)) \\ Michel Marcus, Jun 05 2020

A242588 Decimal expansion of the expected reciprocal Euclidean distance between two random points in the unit cube.

Original entry on oeis.org

1, 8, 8, 2, 3, 1, 2, 6, 4, 4, 3, 8, 9, 6, 6, 0, 1, 6, 0, 1, 0, 5, 6, 0, 0, 8, 3, 8, 8, 6, 8, 3, 6, 7, 5, 8, 7, 8, 5, 2, 4, 6, 2, 8, 8, 0, 3, 1, 0, 7, 0, 7, 9, 6, 0, 5, 5, 2, 9, 3, 2, 3, 1, 4, 5, 7, 7, 2, 1, 0, 3, 7, 9, 6, 1, 0, 6, 0, 3, 5, 8, 1, 2, 7, 2, 3, 9, 9, 9, 9, 1, 4, 8, 4, 5, 6, 2, 0, 4, 2
Offset: 1

Views

Author

Jean-François Alcover, May 20 2014

Keywords

Examples

			1.88231264438966016010560083886836758785246288...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.1, p. 480.

Crossrefs

Programs

  • Mathematica
    2*(1/5*(Sqrt[2] + 1 - 2*Sqrt[3]) - Log[(Sqrt[2] - 1)*(2 - Sqrt[3])] - Pi/3) // RealDigits[#, 10, 100]& // First

Formula

Integral over a unit cube of 1/sqrt((r1-q1)^2 + (r2-q2)^2 + (r3-q3)^2) dr1 dr2 dr3 dq1 dq2 dq3 = 2*(1/5*(sqrt(2) + 1 - 2*sqrt(3)) - log((sqrt(2) - 1)*(2 - sqrt(3))) - Pi/3).

A355415 Decimal expansion of the average distance between the center of a unit cube to a point on its surface uniformly chosen by a random direction from the center.

Original entry on oeis.org

6, 1, 0, 6, 8, 7, 4, 0, 1, 9, 5, 1, 5, 8, 3, 8, 5, 6, 5, 3, 4, 6, 6, 7, 2, 2, 9, 6, 7, 3, 7, 1, 6, 6, 2, 8, 4, 6, 9, 1, 1, 5, 5, 2, 5, 8, 1, 9, 0, 7, 4, 6, 2, 7, 5, 8, 9, 9, 2, 9, 9, 4, 1, 0, 2, 5, 9, 6, 8, 1, 5, 7, 3, 6, 2, 8, 8, 6, 6, 4, 1, 3, 7, 2, 1, 4, 5, 0, 5, 5, 9, 6, 5, 7, 6, 6, 0, 8, 0, 8, 3, 3, 5, 7, 2
Offset: 0

Views

Author

Amiram Eldar, Jul 01 2022

Keywords

Comments

If the point is uniformly chosen at random on the surface, then the average is A097047.

Examples

			0.61068740195158385653466722967371662846911552581907...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[(3/Pi)*Integrate[ArcCot[Sqrt[1 + x^2]]/Sqrt[1 + x^2], {x, 0, 1}], 101], 10, 100][[1]]
    (* or *)
    RealDigits[3 * ((Im[PolyLog[2, (3 - 2*Sqrt[2])*I]] - Catalan)/Pi - Log[17 - 12*Sqrt[2]]/8), 10, 100][[1]]

Formula

Equals (1/2) * Integral_{x=-1..1, y=-1..1} (1 + x^2 + y^2)^(-1) dx dy / Integral_{x=-1..1, y=-1..1} (1 + x^2 + y^2)^(-3/2) dx dy.
Equals (3/Pi) * Integral_{x=0..1} arccot(sqrt(1+x^2))/sqrt(1+x^2) dx.
Equals (6/Pi) * Integral_{x=0..Pi/4} log(sqrt(1+cos(x)^2)/cos(x)) dx.
Equals 3 * ((Im(Li_2((3-2*sqrt(2))*i)) - G)/Pi - log(17-12*sqrt(2))/8), where Li_2 is the dilogarithm function, i is the imaginary unit, and G is Catalan's constant (A006752).
Showing 1-4 of 4 results.