cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A316837 Indices of 0's in A254990.

Original entry on oeis.org

0, 2, 4, 6, 8, 10, 12, 14, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 123, 125, 127, 129, 131, 133, 135
Offset: 1

Views

Author

N. J. A. Sloane, Jul 22 2018

Keywords

Crossrefs

A316838 Indices of 1's in A254990.

Original entry on oeis.org

1, 5, 9, 13, 16, 20, 24, 28, 30, 34, 38, 42, 45, 49, 53, 57, 61, 65, 69, 72, 76, 80, 84, 86, 90, 94, 98, 101, 105, 109, 113, 117, 121, 124, 128, 132, 136, 138, 142, 146, 150, 153, 157, 161, 165, 169, 173, 177, 180, 184, 188, 192, 194, 198, 202, 206, 209, 213, 217, 221, 224, 228, 232
Offset: 1

Views

Author

N. J. A. Sloane, Jul 22 2018

Keywords

Crossrefs

A316839 Indices of 2's in A254990.

Original entry on oeis.org

3, 11, 18, 26, 32, 40, 47, 55, 59, 67, 74, 82, 88, 96, 103, 111, 119, 126, 134, 140, 148, 155, 163, 167, 175, 182, 190, 196, 204, 211, 219, 226, 234, 240, 248, 255, 263, 267, 275, 282, 290, 296, 304, 311, 319, 327, 334, 342, 348, 356, 363, 371, 375, 383, 390, 398, 404, 412, 419, 427
Offset: 1

Views

Author

N. J. A. Sloane, Jul 22 2018

Keywords

Crossrefs

A316840 Indices of 3's in A254990.

Original entry on oeis.org

7, 22, 36, 51, 63, 78, 92, 107, 115, 130, 144, 159, 171, 186, 200, 215, 230, 244, 259, 271, 286, 300, 315, 323, 338, 352, 367, 379, 394, 408, 423, 437, 452, 464, 479, 493, 508, 516, 531, 545, 560, 572, 587, 601, 616, 631, 645, 660, 672, 687, 701, 716, 724, 739, 753, 768, 780, 795, 809, 824
Offset: 1

Views

Author

N. J. A. Sloane, Jul 22 2018

Keywords

Crossrefs

A255014 Abelian complexity function of the 4-bonacci word (A254990).

Original entry on oeis.org

4, 4, 6, 4, 7, 6, 7, 4, 7, 7, 8, 6, 8, 7, 7, 4, 7, 7, 8, 7, 8, 8, 7, 7, 8, 8, 7, 8, 7, 7, 4, 7, 7, 8, 7, 8, 8, 8, 7, 8, 8, 8, 8, 7, 7, 7, 7, 8, 8, 8, 8, 7, 8, 8, 8, 7, 8, 7, 7, 4, 7, 8, 9, 7, 8, 9, 9, 7, 8, 10, 10, 8, 8, 8, 8, 7, 9, 10, 9, 8, 9, 9, 8, 8, 9, 10, 7, 8, 7, 8, 7, 8, 9, 9, 8, 8, 8, 8, 8, 7
Offset: 1

Views

Author

Ondrej Turek, Feb 12 2015

Keywords

Comments

For all n, a(n) either equals 4 or belongs to {6,7,...,16}; value 5 is never attained.
a(n)=4 if and only if n = T(k)+T(k-4)+T(k-8)+T(k-12)+...+T(4+(k mod 4)) for a certain k>=4, where T(i) are tetranacci numbers A000078.
a(n)=6 only for n = 3,6,12.
Each value from the set {7,8,...,16} is attained infinitely often.

Examples

			From _Wolfdieter Lang_, Mar 26 2015: (Start)
a(1) = 4 because the one letter factor words of A254990 are 0, 1, 2, 3 with the set of occurrence tuples (Parikh vectors) {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} of cardinality 4. See the Turek links.
a(2) = 4 because the set of occurrence tuples for the two letter factors 00, 01, 10, 02, 20, 03, 30 of A254990 is {(2, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)} of cardinality 4. (End)
		

Crossrefs

Cf. A000078 (tetranacci numbers).
Cf. A216190 (abelian complexity of tribonacci word), A254990 (4-bonacci word).

A383005 Exponent of the highest power of 2 dividing the n-th biquadratefree number.

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0
Offset: 1

Views

Author

Amiram Eldar, Apr 12 2025

Keywords

Comments

First differs from A254990 at n = 31.

Crossrefs

Programs

  • Mathematica
    biqFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 4 &]; IntegerExponent[Select[Range[200], biqFreeQ], 2]
  • PARI
    isbiqfree(n) = {my(f = factor(n)); for(i=1, #f~, if(f[i, 2] > 3, return (0))); 1; }
    list(lim) = for(k = 1, lim, if(isbiqfree(k), print1(valuation(k, 2), ", ")));

Formula

a(n) = A007814(A046100(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 11/15.
In general, the asymptotic mean of the exponent of the highest power of 2 dividing the n-th k-free number (number that is not divisible by a k-th power other than 1), for k >= 2, is 1 - k/(2^k-1).
Showing 1-6 of 6 results.