cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255008 Array T(n,k) read by ascending antidiagonals, where T(n,k) is the numerator of polygamma(n, 1) - polygamma(n, k).

Original entry on oeis.org

0, 0, -1, 0, 1, -3, 0, -2, 5, -11, 0, 6, -9, 49, -25, 0, -24, 51, -251, 205, -137, 0, 120, -99, 1393, -2035, 5269, -49, 0, -720, 975, -8051, 22369, -256103, 5369, -363, 0, 5040, -5805, 237245, -257875, 14001361, -28567, 266681, -761, 0, -40320
Offset: 0

Views

Author

Jean-François Alcover, Feb 12 2015

Keywords

Comments

Up to signs, row n=0 is A001008/A002805, row n=1 is A007406/A007407 and column k=1 is n!.

Examples

			Array of fractions begin:
0,  -1,  -3/2,       -11/6,          -25/12,               -137/60, ...
0,   1,   5/4,       49/36,         205/144,             5269/3600, ...
0,  -2,  -9/4,    -251/108,       -2035/864,        -256103/108000, ...
0,   6,  51/8,    1393/216,      22369/3456,      14001361/2160000, ...
0, -24, -99/4,   -8051/324,   -257875/10368,   -806108207/32400000, ...
0, 120, 975/8, 237245/1944, 15187325/124416, 47463376609/388800000, ...
...
		

Crossrefs

Programs

  • Mathematica
    T[n_, k_] := (-1)^(n+1)*n!*HarmonicNumber[k-1, n+1] // Numerator; Table[T[n-k, k], {n, 0, 10}, {k, 1, n}] // Flatten

Formula

Fraction giving T(n,k) = polygamma(n, 1) - polygamma(n, k) = (-1)^(n+1)*n! * sum_{j=1..k-1} 1/j^(n+1) = (-1)^(n+1)*n!*H(k-1, n+1), where H(n,r) gives the n-th harmonic number of order r.