cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255011 Number of polygons formed by connecting all the 4n points on the perimeter of an n X n square by straight lines; a(0) = 0 by convention.

Original entry on oeis.org

0, 4, 56, 340, 1120, 3264, 6264, 13968, 22904, 38748, 58256, 95656, 120960, 192636, 246824, 323560, 425408, 587964, 682296, 932996, 1061232, 1327524, 1634488, 2049704, 2227672, 2806036, 3275800, 3810088, 4307520, 5298768, 5577096, 6958848, 7586496, 8672520, 9901352
Offset: 0

Views

Author

Johan Westin, Feb 12 2015

Keywords

Comments

There are n+1 points on each side of the square, but that counts the four corners twice, so there are a total of 4n points on the perimeter. - N. J. A. Sloane, Jan 23 2020
a(n) is always divisible by 4, by symmetry. If n is odd, a(n) is divisible by 8.
From Michael De Vlieger, Feb 19-20 2015: (Start)
For n > 0, the vertices of the bounding square generate diametrical bisectors that cross at the center. Thus each diagram has fourfold symmetry.
For n > 0, an orthogonal n X n grid is produced by corresponding horizontal and vertical points on opposite sides.
Terms {1, 3, 9} are not congruent to 0 (mod 8).
Number of edges: {0, 8, 92, 596, 1936, 6020, 11088, 26260, 42144, 72296, 107832, ...}. See A331448. (End)

Examples

			For n = 3, the perimeter of the square contains 12 points:
  * * * *
  *     *
  *     *
  * * * *
Connect each point to every other point with a straight line inside the square. Then count the polygons (or regions) that have formed. There are 340 polygons, so a(3) = 340.
For n = 1, the full picture is:
  *-*
  |X|
  *-*
The lines form four triangular regions, so a(1) = 4.
For n = 0, the square can be regarded as consisting of a single point, producing no lines or polygons, and so a(0) = 0.
		

Crossrefs

Cf. A092098 (triangular analog), A331448 (edges), A331449 (points), A334699 (k-gons).
For the circular analog see A006533, A007678.

Formula

No formula is presently known. - N. J. A. Sloane, Feb 04 2020

Extensions

a(11)-a(29) from Hiroaki Yamanouchi, Feb 23 2015
Offset changed by N. J. A. Sloane, Jan 23 2020