A255054 Run lengths in A255072.
1, 2, 3, 1, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 5, 3, 4, 4, 4, 3, 1, 4, 4, 5, 3, 7, 5, 4, 4, 4, 5, 3, 4, 4, 4, 3, 1, 4, 4, 5, 3, 7, 5, 4, 7, 6, 4, 6, 5, 4, 4, 4, 5, 3, 7, 5, 4, 4, 4, 5, 3, 4, 4, 4, 3, 1, 4, 4, 5, 3, 7, 5, 4, 7, 6, 4, 6, 5, 4, 7, 6, 7, 8, 5, 6, 6, 4, 6, 5, 4, 4, 4, 5, 3, 7, 5, 4, 7, 6, 4, 6, 5, 4, 4, 4, 5, 3, 7, 5, 4, 4, 4, 5, 3, 4, 4, 4, 3, 1, 4, 4, 5, 3, 7, 5, 4, 7, 6, 4
Offset: 0
Keywords
Examples
0 is the only number reached from 0 in zero steps, thus a(0) = 1. Both 1 and 2, in binary '1' and '10', when the number of runs (A005811) is subtracted from them, result zero: 1-1 = 2-2 = 0, and these are only such numbers where the zero is reached with one step, thus a(1) = 2. For 3, 4 and 5, in binary '11', '100' and '101', subtracting the number of runs results 2 in all cases, thus two steps are requires to reach zero, and as there are no other such cases, a(2) = 3. For 6, in binary '110', subtracting A005811 repeatedly gives -> 6-2 = 4, 4-2 = 2, 2-2 = 0, three steps in total, and as 6 is the only such number requiring three steps, a(3) = 1.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..16143
Comments