cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255064 Number of times an odious number is encountered when iterating from 2^(n+1)-2 to (2^n)-2 with the map x -> x - (number of runs in binary representation of x).

Original entry on oeis.org

0, 1, 1, 1, 3, 4, 9, 15, 29, 45, 94, 155, 318, 548, 1088, 1976, 3812, 7115, 13617, 25733, 49247, 93739, 179691, 343816, 660735, 1270112, 2448975, 4727786, 9146539, 17717760, 34366228, 66718749, 129619199, 251958752, 489959621, 953155315, 1854898028
Offset: 0

Views

Author

Antti Karttunen, Feb 14 2015

Keywords

Examples

			For n=0 we count the odious numbers (A000069) found in range A255056(0..0), and A255056(0) = 0 is not an odious number, thus a(0) = 0.
For n=1 we count the odious numbers in range A255056(1..1), and A255056(1) = 2 is an odious number, thus a(1) = 1.
For n=2 we look at the numbers in range A255056(2..3), i.e. 4 and 6 and while 4 is an odious number, 6 is not, thus a(2) = 1.
For n=5 we look at the numbers in range A255056(12..20) which are (32, 36, 42, 46, 50, 54, 58, 60, 62), or if we take them in the order the come when iterating A236840 (as in A255066(12..20): 62, 60, 58, 54, 50, 46, 42, 36, 32), that is, we start iterating with map m(n) = A236840(n) from the initial value (2^(5+1))-2 = 62. Thus we get m(62) = 60, m(60) = 58, m(58) = 54, m(54) = 50, m(50) = 46, m(46) = 42, m(42) = 36 and finally m(36) = 32 which is (2^5). Of the nine numbers encountered, only 62, 50, 42 and 32 are odious numbers, thus a(5) = 4.
		

Crossrefs

Programs

Formula

a(n) = Sum_{k = A255062(n) .. A255061(n+1)} A254114(k).
a(n) = Sum_{k = A255062(n) .. A255061(n+1)} A010060(A255066(k)).
Other identities. For all n >= 1:
a(n) = A255071(n) - A255063(n).