A255107 T(n,k)=Number of length n+k 0..2 arrays with at most one downstep in every k consecutive neighbor pairs.
9, 26, 27, 66, 75, 81, 147, 168, 216, 243, 294, 331, 441, 622, 729, 540, 597, 789, 1137, 1791, 2187, 927, 1008, 1302, 1905, 2907, 5157, 6561, 1507, 1616, 2032, 2951, 4429, 7498, 14849, 19683, 2343, 2484, 3042, 4338, 6582, 10125, 19338, 42756, 59049, 3510
Offset: 1
Examples
Some solutions for n=4 k=4 ..0....0....1....0....1....0....0....0....0....1....0....1....1....0....0....1 ..0....1....2....0....2....2....0....1....1....0....0....2....2....1....1....1 ..0....2....0....1....0....2....1....0....0....1....1....0....2....0....2....1 ..0....0....0....2....0....0....2....0....0....1....1....0....2....0....2....2 ..2....0....2....0....1....2....2....0....1....2....1....0....0....2....2....2 ..2....0....2....1....2....2....2....2....1....1....1....1....1....2....0....0 ..0....2....1....1....0....2....1....0....2....2....2....0....2....2....0....1 ..0....0....1....1....0....0....2....1....2....2....1....2....2....2....1....1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-3)
k=3: a(n) = 3*a(n-1) -3*a(n-2) +8*a(n-3) -9*a(n-4) +3*a(n-5) -a(n-6)
k=4: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +12*a(n-4) -18*a(n-5) +7*a(n-6) -3*a(n-8) +a(n-9)
k=5: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +18*a(n-5) -29*a(n-6) +12*a(n-7) -6*a(n-10) +3*a(n-11)
k=6: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +25*a(n-6) -42*a(n-7) +18*a(n-8) -10*a(n-12) +6*a(n-13)
k=7: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +33*a(n-7) -57*a(n-8) +25*a(n-9) -15*a(n-14) +10*a(n-15)
Empirical for row n:
n=1: a(n) = (1/120)*n^5 + (1/6)*n^4 + (19/24)*n^3 + (11/6)*n^2 + (16/5)*n + 3
n=2: a(n) = (1/120)*n^5 + (5/24)*n^4 + (37/24)*n^3 + (175/24)*n^2 + (239/20)*n + 6
n=3: a(n) = (1/120)*n^5 + (1/4)*n^4 + (59/24)*n^3 + (93/4)*n^2 + (1321/30)*n + 11
n=4: a(n) = (1/120)*n^5 + (7/24)*n^4 + (85/24)*n^3 + (1505/24)*n^2 + (2809/20)*n + 30 for n>2
n=5: a(n) = (1/120)*n^5 + (1/3)*n^4 + (115/24)*n^3 + (889/6)*n^2 + (3867/10)*n + 111 for n>3
n=6: a(n) = (1/120)*n^5 + (3/8)*n^4 + (149/24)*n^3 + (2521/8)*n^2 + (56417/60)*n + 385 for n>4
n=7: a(n) = (1/120)*n^5 + (5/12)*n^4 + (187/24)*n^3 + (7393/12)*n^2 + (20667/10)*n + 1143 for n>5
Comments