cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255107 T(n,k)=Number of length n+k 0..2 arrays with at most one downstep in every k consecutive neighbor pairs.

Original entry on oeis.org

9, 26, 27, 66, 75, 81, 147, 168, 216, 243, 294, 331, 441, 622, 729, 540, 597, 789, 1137, 1791, 2187, 927, 1008, 1302, 1905, 2907, 5157, 6561, 1507, 1616, 2032, 2951, 4429, 7498, 14849, 19683, 2343, 2484, 3042, 4338, 6582, 10125, 19338, 42756, 59049, 3510
Offset: 1

Views

Author

R. H. Hardin, Feb 14 2015

Keywords

Comments

Table starts
......9.....26.....66....147....294....540....927...1507...2343...3510...5096
.....27.....75....168....331....597...1008...1616...2484...3687...5313...7464
.....81....216....441....789...1302...2032...3042...4407...6215...8568..11583
....243....622...1137...1905...2951...4338...6141...8448..11361..14997..19489
....729...1791...2907...4429...6582...9297..12662..16779..21765..27753..34893
...2187...5157...7498..10125..14001..19263..25578..33063..41851..52092..63954
...6561..14849..19338..23463..29147..38010..49611..63075..78552..96210.116236
..19683..42756..49698..55246..61542..73278..91887.115470.142200.172264.205869
..59049.123111.127871.129480.133392.143045.166290.202716.247600.297597.352935
.177147.354484.329325.300432.292534.288057.303969.348070.415308.496188.585101

Examples

			Some solutions for n=4 k=4
..0....0....1....0....1....0....0....0....0....1....0....1....1....0....0....1
..0....1....2....0....2....2....0....1....1....0....0....2....2....1....1....1
..0....2....0....1....0....2....1....0....0....1....1....0....2....0....2....1
..0....0....0....2....0....0....2....0....0....1....1....0....2....0....2....2
..2....0....2....0....1....2....2....0....1....2....1....0....0....2....2....2
..2....0....2....1....2....2....2....2....1....1....1....1....1....2....0....0
..0....2....1....1....0....2....1....0....2....2....2....0....2....2....0....1
..0....0....1....1....0....0....2....1....2....2....1....2....2....2....1....1
		

Crossrefs

Column 1 is A000244(n+1)
Column 2 is A018919(n+1)

Formula

Empirical for column k:
k=1: a(n) = 3*a(n-1)
k=2: a(n) = 3*a(n-1) -a(n-3)
k=3: a(n) = 3*a(n-1) -3*a(n-2) +8*a(n-3) -9*a(n-4) +3*a(n-5) -a(n-6)
k=4: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +12*a(n-4) -18*a(n-5) +7*a(n-6) -3*a(n-8) +a(n-9)
k=5: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +18*a(n-5) -29*a(n-6) +12*a(n-7) -6*a(n-10) +3*a(n-11)
k=6: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +25*a(n-6) -42*a(n-7) +18*a(n-8) -10*a(n-12) +6*a(n-13)
k=7: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3) +33*a(n-7) -57*a(n-8) +25*a(n-9) -15*a(n-14) +10*a(n-15)
Empirical for row n:
n=1: a(n) = (1/120)*n^5 + (1/6)*n^4 + (19/24)*n^3 + (11/6)*n^2 + (16/5)*n + 3
n=2: a(n) = (1/120)*n^5 + (5/24)*n^4 + (37/24)*n^3 + (175/24)*n^2 + (239/20)*n + 6
n=3: a(n) = (1/120)*n^5 + (1/4)*n^4 + (59/24)*n^3 + (93/4)*n^2 + (1321/30)*n + 11
n=4: a(n) = (1/120)*n^5 + (7/24)*n^4 + (85/24)*n^3 + (1505/24)*n^2 + (2809/20)*n + 30 for n>2
n=5: a(n) = (1/120)*n^5 + (1/3)*n^4 + (115/24)*n^3 + (889/6)*n^2 + (3867/10)*n + 111 for n>3
n=6: a(n) = (1/120)*n^5 + (3/8)*n^4 + (149/24)*n^3 + (2521/8)*n^2 + (56417/60)*n + 385 for n>4
n=7: a(n) = (1/120)*n^5 + (5/12)*n^4 + (187/24)*n^3 + (7393/12)*n^2 + (20667/10)*n + 1143 for n>5