A255169 Decimal expansion of the sum_{n>=0} n^2/e^n = e(1+e)/(e-1)^3.
1, 9, 9, 2, 2, 9, 4, 7, 6, 7, 1, 2, 4, 9, 8, 7, 3, 9, 2, 9, 2, 6, 0, 1, 6, 6, 1, 3, 0, 0, 2, 1, 1, 7, 3, 8, 7, 8, 3, 1, 4, 0, 4, 5, 2, 3, 0, 6, 3, 7, 7, 0, 0, 6, 9, 5, 2, 3, 5, 0, 1, 6, 8, 4, 8, 4, 8, 1, 9, 8, 9, 9, 3, 4, 9, 7, 9, 2, 7, 0, 5, 8
Offset: 1
Examples
1.99229476712498....
Programs
-
Mathematica
Sum[n^2/Exp[n], {n, 0, Infinity}]; N[Sum[n^2/Exp[n], {n, 0, Infinity}],100]
-
PARI
suminf(n=0, n^2/exp(n)) \\ Michel Marcus, Jul 30 2018
-
PARI
exp(1)*(1+exp(1))/(exp(1)-1)^3 \\ Altug Alkan, Jul 30 2018
Formula
Equals sum_{n>=0} n^2/e^n.
Comments