A255170 a(n) = A087803(n) - n + 1.
1, 1, 2, 5, 13, 32, 79, 193, 478, 1196, 3037, 7802, 20287, 53259, 141069, 376449, 1011295, 2732453, 7421128, 20247355, 55469186, 152524366, 420807220, 1164532203, 3231706847, 8991343356, 25075077684, 70082143952, 196268698259, 550695545855, 1547867058852
Offset: 1
Examples
a(4) = 1 - 4 + Sum_{k=1..4} A000081(k) = 1 - 4 + 1 + 1 + 2 + 4 = 5. a(5) = 1 - 5 + Sum_{k=1..5} A000081(k) = 1 - 5 + 1 + 1 + 2 + 4 + 9 = 13.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- Libor Behounek, Ordinal Calculator
- R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis
- MathOverflow, A discussion related to this sequence
- Eric Weisstein's World of Mathematics, Ordinal Number.
- Eric Weisstein's World of Mathematics, Rooted Tree.
Crossrefs
Programs
-
Maple
with(numtheory): t:= proc(n) option remember; `if`(n<2, n, (add(add( d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1)) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0, add(b(n-i*j, i-1)*binomial(t(i)+j-1, j), j=0..n/i))) end: a:= proc(n) option remember; `if`(n<3, 1, b(n-1$2) +2*a(n-1) -a(n-2)) end: seq(a(n), n=1..40); # Alois P. Heinz, Feb 17 2015
-
Mathematica
t[1] = a[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n}, {m, (n-1)/k}]; a[n_] := a[n] = a[n-1] + t[n] - 1; Table[a[n], {n, 40}] (* Vladimir Reshetnikov, Aug 12 2016 *)
Formula
Extensions
Simpler definition and program in terms of A000081. - Vladimir Reshetnikov, Aug 12 2016
Renamed. - Vladimir Reshetnikov, Aug 23 2016
Comments