cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A255197 Number of dissections of a convex polygon with n+3 sides that have exactly one triangle, and that triangle shares at least one side with the exterior polygon.

Original entry on oeis.org

1, 0, 5, 6, 35, 80, 306, 880, 3003, 9384, 31070, 100226, 330015, 1079392, 3559001, 11724930, 38772445, 128313480, 425553513, 1412911148, 4697992880, 15637660896, 52109660575, 173809285676, 580261793715, 1938778221800, 6482844907190, 21692435752290, 72633495206803
Offset: 0

Views

Author

Michael D. Weiner, Feb 16 2015

Keywords

Crossrefs

Cf. A253192.

Programs

  • Maple
    a:=n->(n+3)/(n+2)*sum(binomial(n+k+1,k)*binomial(n-k-1,k-1)*(n+2*k)/(n+k+1),k=1..trunc(n/2)): (1,seq(a(n), n=1..30));
  • Mathematica
    Flatten[{1,Table[(n+3)/(n+2)*Sum[Binomial[n+k+1,k]*Binomial[n-k-1,k-1]*(n+2k)/(n+k+1),{k,Floor[n/2]}],{n,20}]}] (* Vaclav Kotesovec, Feb 19 2015 *)
  • PARI
    a(n) = if (n==0, 1, (n+3)*sum(k=1, n\2, binomial(n+k+1,k)*binomial(n-k-1,k-1)*(n+2*k)/(n+k+1))/(n+2)); \\ Michel Marcus, Mar 03 2015

Formula

a(n) = (n+3)/(n+2) * Sum_{k=1..n/2} C(n+k+1,k)*C(n-k-1,k-1)*(n+2*k)/(n+k+1) , n>0.
Recurrence: 5*(n-2)*n*(n+1)^2*(n+2)^2*(481*n^2 - 1003*n + 540)*a(n) = 4*n*(n+1)^2*(n+3)*(962*n^4 - 3449*n^3 + 3262*n^2 - 784*n - 180)*a(n-1) + 4*(n-1)*n*(n+2)*(n+3)*(3848*n^4 - 11872*n^3 + 12073*n^2 - 3572*n - 180)*a(n-2) - 2*(n-2)*(n-1)*(n+1)*(n+2)*(n+3)*(2*n-5)*(481*n^2 - 41*n + 18)*a(n-3). - Vaclav Kotesovec, Feb 19 2015
a(n) ~ c * d^n / sqrt(Pi*n), where d = 3.40869819984215108586... is the root of the equation 4 - 32*d - 8*d^2 + 5*d^3 = 0, and c = 0.838651324525827608604668464... is the root of the equation 169 + 157184*c^2 - 275872*c^4 + 74000*c^6 = 0. - Vaclav Kotesovec, Feb 21 2015

Extensions

Definition clarified by Michael D. Weiner, Mar 09 2015