A255197 Number of dissections of a convex polygon with n+3 sides that have exactly one triangle, and that triangle shares at least one side with the exterior polygon.
1, 0, 5, 6, 35, 80, 306, 880, 3003, 9384, 31070, 100226, 330015, 1079392, 3559001, 11724930, 38772445, 128313480, 425553513, 1412911148, 4697992880, 15637660896, 52109660575, 173809285676, 580261793715, 1938778221800, 6482844907190, 21692435752290, 72633495206803
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Cf. A253192.
Programs
-
Maple
a:=n->(n+3)/(n+2)*sum(binomial(n+k+1,k)*binomial(n-k-1,k-1)*(n+2*k)/(n+k+1),k=1..trunc(n/2)): (1,seq(a(n), n=1..30));
-
Mathematica
Flatten[{1,Table[(n+3)/(n+2)*Sum[Binomial[n+k+1,k]*Binomial[n-k-1,k-1]*(n+2k)/(n+k+1),{k,Floor[n/2]}],{n,20}]}] (* Vaclav Kotesovec, Feb 19 2015 *)
-
PARI
a(n) = if (n==0, 1, (n+3)*sum(k=1, n\2, binomial(n+k+1,k)*binomial(n-k-1,k-1)*(n+2*k)/(n+k+1))/(n+2)); \\ Michel Marcus, Mar 03 2015
Formula
a(n) = (n+3)/(n+2) * Sum_{k=1..n/2} C(n+k+1,k)*C(n-k-1,k-1)*(n+2*k)/(n+k+1) , n>0.
Recurrence: 5*(n-2)*n*(n+1)^2*(n+2)^2*(481*n^2 - 1003*n + 540)*a(n) = 4*n*(n+1)^2*(n+3)*(962*n^4 - 3449*n^3 + 3262*n^2 - 784*n - 180)*a(n-1) + 4*(n-1)*n*(n+2)*(n+3)*(3848*n^4 - 11872*n^3 + 12073*n^2 - 3572*n - 180)*a(n-2) - 2*(n-2)*(n-1)*(n+1)*(n+2)*(n+3)*(2*n-5)*(481*n^2 - 41*n + 18)*a(n-3). - Vaclav Kotesovec, Feb 19 2015
a(n) ~ c * d^n / sqrt(Pi*n), where d = 3.40869819984215108586... is the root of the equation 4 - 32*d - 8*d^2 + 5*d^3 = 0, and c = 0.838651324525827608604668464... is the root of the equation 169 + 157184*c^2 - 275872*c^4 + 74000*c^6 = 0. - Vaclav Kotesovec, Feb 21 2015
Extensions
Definition clarified by Michael D. Weiner, Mar 09 2015