A361909
Positive integers > 1 whose prime indices satisfy: (maximum) = 2*(length).
Original entry on oeis.org
3, 14, 21, 35, 49, 52, 78, 117, 130, 152, 182, 195, 228, 273, 286, 325, 338, 342, 380, 429, 455, 464, 507, 513, 532, 570, 637, 696, 715, 798, 836, 845, 855, 950, 988, 1001, 1044, 1160, 1183, 1184, 1197, 1254, 1292, 1330, 1425, 1444, 1482, 1566, 1573, 1624
Offset: 1
The terms together with their prime indices begin:
3: {2}
14: {1,4}
21: {2,4}
35: {3,4}
49: {4,4}
52: {1,1,6}
78: {1,2,6}
117: {2,2,6}
130: {1,3,6}
152: {1,1,1,8}
182: {1,4,6}
195: {2,3,6}
228: {1,1,2,8}
273: {2,4,6}
286: {1,5,6}
325: {3,3,6}
338: {1,6,6}
342: {1,2,2,8}
Without multiplying by 2 in the RHS, we have
A106529.
Partitions of this type are counted by
A237753.
The RHS is
A255201 (twice bigomega).
A001221 (omega) counts distinct prime factors.
A001222 (bigomega) counts prime factors with multiplicity.
A362050
Numbers whose prime indices satisfy: (length) = 2*(median).
Original entry on oeis.org
4, 54, 81, 90, 100, 126, 135, 140, 189, 198, 220, 234, 260, 297, 306, 340, 342, 351, 380, 414, 459, 460, 513, 522, 558, 580, 620, 621, 666, 738, 740, 774, 783, 820, 837, 846, 860, 940, 954, 999, 1060, 1062, 1098, 1107, 1161, 1180, 1206, 1220, 1269, 1278, 1314
Offset: 1
The terms together with their prime indices begin:
4: {1,1}
54: {1,2,2,2}
81: {2,2,2,2}
90: {1,2,2,3}
100: {1,1,3,3}
126: {1,2,2,4}
135: {2,2,2,3}
140: {1,1,3,4}
189: {2,2,2,4}
198: {1,2,2,5}
Before multiplying the median by 2,
A361800 counts partitions of this type.
Partitions of this type are counted by
A362049.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],PrimeOmega[#]==2*Median[prix[#]]&]
Showing 1-2 of 2 results.
Comments